File size: 64,426 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
"""

Transformer blocks script  ver: OCT 28th 15:00



bug fix: 'Cross-attn' name is used in MHGA for compareability



by the authors, check our github page:

https://github.com/sagizty/Multi-Stage-Hybrid-Transformer



based on:timm

https://www.freeaihub.com/post/94067.html



"""

import math
import logging
from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

import numpy as np

from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD

from timm.models.layers import StdConv2dSame, DropPath, to_2tuple, trunc_normal_

from .attention_modules import simam_module, cbam_module, se_module


class FFN(nn.Module):  # Mlp from timm
    """

    FFN (from timm)



    :param in_features:

    :param hidden_features:

    :param out_features:

    :param act_layer:

    :param drop:

    """

    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()

        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()

        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)

        x = self.fc2(x)
        x = self.drop(x)

        return x


class Attention(nn.Module):  # qkv Transform + MSA(MHSA) (Attention from timm)
    """

    qkv Transform + MSA(MHSA) (from timm)



    # input  x.shape = batch, patch_number, patch_dim

    # output  x.shape = batch, patch_number, patch_dim



    :param dim: dim=CNN feature dim, because the patch size is 1x1

    :param num_heads:

    :param qkv_bias:

    :param qk_scale: by default head_dim ** -0.5  (squre root)

    :param attn_drop: dropout rate after MHSA

    :param proj_drop:



    """

    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        # input x.shape = batch, patch_number, patch_dim
        batch, patch_number, patch_dim = x.shape

        # mlp transform + head split [N, P, D] -> [N, P, 3D] -> [N, P, 3, H, D/H] -> [3, N, H, P, D/H]
        qkv = self.qkv(x).reshape(batch, patch_number, 3, self.num_heads, patch_dim //
                                  self.num_heads).permute(2, 0, 3, 1, 4)
        # 3 [N, H, P, D/H]
        q, k, v = qkv[0], qkv[1], qkv[2]

        # [N, H, P, D/H] -> [N, H, P, D/H]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)

        attn = self.attn_drop(attn)  # Dropout

        # head fusion [N, H, P, D/H] -> [N, P, H, D/H] -> [N, P, D]
        x = (attn @ v).transpose(1, 2).reshape(batch, patch_number, patch_dim)

        x = self.proj(x)
        x = self.proj_drop(x)  # mlp

        # output x.shape = batch, patch_number, patch_dim
        return x


class Encoder_Block(nn.Module):  # teansformer Block from timm

    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,

                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        """

        # input x.shape = batch, patch_number, patch_dim

        # output x.shape = batch, patch_number, patch_dim



        :param dim: dim

        :param num_heads:

        :param mlp_ratio: FFN

        :param qkv_bias:

        :param qk_scale: by default head_dim ** -0.5  (squre root)

        :param drop:

        :param attn_drop: dropout rate after Attention

        :param drop_path: dropout rate after sd

        :param act_layer: FFN act

        :param norm_layer: Pre Norm

        """
        super().__init__()
        # Pre Norm
        self.norm1 = norm_layer(dim)  # Transformer used the nn.LayerNorm
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
                              proj_drop=drop)
        # NOTE from timm: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()  # stochastic depth

        # Add & Norm
        self.norm2 = norm_layer(dim)

        # FFN
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = FFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def forward(self, x):
        x = x + self.drop_path(self.attn(self.norm1(x)))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class Guided_Attention(nn.Module):  # q1 k1 v0 Transform + MSA(MHSA) (based on timm Attention)
    """

    notice the q abd k is guided information from Focus module

    qkv Transform + MSA(MHSA) (from timm)



    # 3 input of x.shape = batch, patch_number, patch_dim

    # 1 output of x.shape = batch, patch_number, patch_dim



    :param dim: dim = CNN feature dim, because the patch size is 1x1

    :param num_heads:

    :param qkv_bias:

    :param qk_scale: by default head_dim ** -0.5  (squre root)

    :param attn_drop:

    :param proj_drop:



    """

    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qT = nn.Linear(dim, dim, bias=qkv_bias)
        self.kT = nn.Linear(dim, dim, bias=qkv_bias)
        self.vT = nn.Linear(dim, dim, bias=qkv_bias)

        self.attn_drop = nn.Dropout(attn_drop)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, q_encoder, k_encoder, v_input):
        # 3 input of x.shape = batch, patch_number, patch_dim
        batch, patch_number, patch_dim = v_input.shape

        q = self.qT(q_encoder).reshape(batch, patch_number, 1, self.num_heads,
                                       patch_dim // self.num_heads).permute(2, 0, 3, 1, 4)
        k = self.kT(k_encoder).reshape(batch, patch_number, 1, self.num_heads,
                                       patch_dim // self.num_heads).permute(2, 0, 3, 1, 4)
        v = self.vT(v_input).reshape(batch, patch_number, 1, self.num_heads,
                                     patch_dim // self.num_heads).permute(2, 0, 3, 1, 4)
        q = q[0]
        k = k[0]
        v = v[0]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)

        attn = self.attn_drop(attn)  # Dropout

        x = (attn @ v).transpose(1, 2).reshape(batch, patch_number, patch_dim)

        x = self.proj(x)
        x = self.proj_drop(x)  # mlp Dropout

        # output of x.shape = batch, patch_number, patch_dim
        return x


class Decoder_Block(nn.Module):
    # FGD Decoder (Transformer encoder + Guided Attention block block)
    def __init__(self, dim, num_heads=8, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,

                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
        """

        # input x.shape = batch, patch_number, patch_dim

        # output x.shape = batch, patch_number, patch_dim



        :param dim: dim=CNN feature dim, because the patch size is 1x1

        :param num_heads: multi-head

        :param mlp_ratio: FFN expand ratio

        :param qkv_bias: qkv MLP bias

        :param qk_scale: by default head_dim ** -0.5  (squre root)

        :param drop: the MLP after MHSA equipt a dropout rate

        :param attn_drop: dropout rate after attention block

        :param drop_path: dropout rate for stochastic depth

        :param act_layer: FFN act

        :param norm_layer: Pre Norm strategy with norm layer

        """
        super().__init__()
        # Pre Norm
        self.norm0 = norm_layer(dim)  # nn.LayerNorm
        self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop,
                              proj_drop=drop)
        # stochastic depth
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        # Pre Norm
        self.norm1 = norm_layer(dim)

        # FFN1
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.FFN1 = FFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        # Guided_Attention
        self.Cross_attn = Guided_Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
                                           attn_drop=attn_drop, proj_drop=drop)

        # Add & Norm
        self.norm2 = norm_layer(dim)
        # FFN2
        self.FFN2 = FFN(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        # Add & Norm
        self.norm3 = norm_layer(dim)

    def forward(self, q_encoder, k_encoder, v_input):
        v_self = v_input + self.drop_path(self.attn(self.norm0(v_input)))

        v_self = v_self + self.drop_path(self.FFN1(self.norm1(v_self)))

        # norm layer for v only, the normalization of q and k is inside FGD Focus block
        v_self = v_self + self.drop_path(self.Cross_attn(q_encoder, k_encoder, self.norm2(v_self)))

        v_self = v_self + self.drop_path(self.FFN2(self.norm3(v_self)))

        return v_self


'''

# testing example



model=Decoder_Block(dim=768)

k = torch.randn(7, 49, 768)

q = torch.randn(7, 49, 768)

v = torch.randn(7, 49, 768)

x = model(k,q,v)

print(x.shape)

'''


# MViT modules
# from https://github.com/facebookresearch/SlowFast/slowfast/models/attention.py
def attention_pool(tensor, pool, thw_shape, has_cls_embed=True, norm=None):
    """

    attention pooling constructor



    input:

    tensor of (B, Head, N, C) or (B, N, C)

    thw_shape: T, H, W  对应CNN的特征图形状(2D形状)T is video frams



    numpy.prob(T, H, W) == N(Num_patches) - 1 (cls token if it is there)



    output:

    tensor of (B, Head, N_O, C) or (B, N_O, C)

    thw_shape: T_O, H_O, W_O



    :param tensor: input feature patches

    :param pool: pooling/conv layer

    :param thw_shape: reconstruction feature map shape

    :param has_cls_embed: if cls token is used

    :param norm:  norm layer



    """
    if pool is None:  # no pool
        return tensor, thw_shape

    tensor_dim = tensor.ndim

    # fix dim: [B, Head, N, C]
    # N is Num_patches in Transformer modeling

    if tensor_dim == 4:
        pass
    elif tensor_dim == 3:  # [B, N, C] -> [B, Head(1), N, C]
        tensor = tensor.unsqueeze(1)
    else:
        raise NotImplementedError(f"Unsupported input dimension {tensor.shape}")

    if has_cls_embed:
        cls_tok, tensor = tensor[:, :, :1, :], tensor[:, :, 1:, :]

    B, Head, N, C = tensor.shape
    T, H, W = thw_shape  # numpy.prob(T, H, W) == N(Num_patches) - 1 (cls token if it is there)

    # [B, Head, N, C] -> [B * Head, T, H, W, C] -> [B * Head, C, T, H, W]
    tensor = (tensor.reshape(B * Head, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous())
    # use tensor.contiguous() to matain its memory location

    # [B * Head, C, T, H, W] -> [B * Head, C, T_O, H_O, W_O]
    tensor = pool(tensor)  # 3D Pooling/ 3D Conv

    # output T, H, W
    thw_shape = [tensor.shape[2], tensor.shape[3], tensor.shape[4]]
    # output Num_patches: numpy.prob(T, H, W)
    N_pooled = tensor.shape[2] * tensor.shape[3] * tensor.shape[4]

    # [B * Head, C, T_O, H_O, W_O] -> [B, Head, C, N_O(T_O*H_O*W_O)] -> [B, Head, N_O, C]
    tensor = tensor.reshape(B, Head, C, N_pooled).transpose(2, 3)

    if has_cls_embed:
        # [B, Head, N_O, C] -> [B, Head, N_O+1(cls token), C]
        tensor = torch.cat((cls_tok, tensor), dim=2)

    # norm
    if norm is not None:
        tensor = norm(tensor)

    # Assert tensor_dim in [3, 4]
    if tensor_dim == 4:  # [B, Head, N_O, C] multi-head
        pass
    else:  # tensor_dim == 3: this is a single Head
        tensor = tensor.squeeze(1)  # [B, N_O, C]

    return tensor, thw_shape


'''

# case 1 single-head no pooling scale

x = torch.randn(1, 197, 768)

thw_shape = [1, 14, 14]

pool = nn.MaxPool3d((1, 1, 1), (1, 1, 1), (0, 0, 0), ceil_mode=False)

y, thw = attention_pool(x, pool, thw_shape)



print(y.shape)  # torch.Size([1, 197, 768])

print(thw)  # [1, 14, 14]





# case 2  multi-head no pooling scale

x = torch.randn(1, 8, 197, 96)  # [B, Head, N_O, C] multi-head

thw_shape = [1, 14, 14]

pool = nn.MaxPool3d((1, 1, 1), (1, 1, 1), (0, 0, 0), ceil_mode=False)

y, thw = attention_pool(x, pool, thw_shape)



print(y.shape)  # torch.Size([1, 8, 197, 96])

print(thw)  # [1, 14, 14]





# case 3 pooling scale

x = torch.randn(1, 197, 768)

thw_shape = [1, 14, 14]

pool = nn.MaxPool3d((1, 2, 2), (1, 2, 2), (0, 0, 0), ceil_mode=False)

y, thw = attention_pool(x, pool, thw_shape)



print(y.shape)  # torch.Size([1, 50, 768])

print(thw)  # [1, 7, 7]





# case 4 multi-head pooling scale

x = torch.randn(1, 8, 197, 96)  # [B, Head, N_O, C] multi-head

thw_shape = [1, 14, 14]

pool = nn.MaxPool3d((1, 2, 2), (1, 2, 2), (0, 0, 0), ceil_mode=False)

y, thw = attention_pool(x, pool, thw_shape)



print(y.shape)  # torch.Size([1, 8, 50, 96])

print(thw)  # [1, 7, 7]

'''


class MultiScaleAttention(nn.Module):  # Attention module
    """

    Attention module constructor



        input:

        tensor of (B, N, C)

        thw_shape: T, H, W  对应CNN的特征图形状(2D形状)T is video frams



        numpy.prob(T, H, W) == N(Num_patches) - 1 (cls token if it is there)



        output:

        tensor of (B, N_O, C)

        thw_shape: T_O, H_O, W_O



        :param dim: Transformer feature dim

        :param num_heads: Transformer heads

        :param qkv_bias: projecting bias

        :param drop_rate: dropout rate after attention calculation and mlp



        :param kernel_q: pooling kernal size for q

        :param kernel_kv: pooling kernal size for k and v

        :param stride_q: pooling kernal stride for q

        :param stride_kv: pooling kernal stride for k and v



        :param norm_layer:  norm layer

        :param has_cls_embed: if cls token is used

        :param mode: mode for attention pooling(downsampling) Options include `conv`, `avg`, and `max`.

        :param pool_first: process pooling(downsampling) before liner projecting



    """

    def __init__(

            self,

            dim,

            num_heads=8,

            qkv_bias=False,

            drop_rate=0.0,

            kernel_q=(1, 1, 1),

            kernel_kv=(1, 1, 1),

            stride_q=(1, 1, 1),

            stride_kv=(1, 1, 1),

            norm_layer=nn.LayerNorm,

            has_cls_embed=True,

            # Options include `conv`, `avg`, and `max`.

            mode="conv",

            # If True, perform pool before projection.

            pool_first=False,

    ):
        super().__init__()

        self.pool_first = pool_first
        self.drop_rate = drop_rate
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim ** -0.5  # squre root
        self.has_cls_embed = has_cls_embed

        padding_q = [int(q // 2) for q in kernel_q]  # 以半个kernal size进行padding,向下取整
        padding_kv = [int(kv // 2) for kv in kernel_kv]

        # projecting mlp
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.k = nn.Linear(dim, dim, bias=qkv_bias)
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        if drop_rate > 0.0:
            self.proj_drop = nn.Dropout(drop_rate)

        # Skip pooling with kernel and stride size of (1, 1, 1).
        if np.prod(kernel_q) == 1 and np.prod(stride_q) == 1:
            kernel_q = ()  # clear
        if np.prod(kernel_kv) == 1 and np.prod(stride_kv) == 1:
            kernel_kv = ()

        if mode in ("avg", "max"):  # use nn.MaxPool3d or nn.AvgPool3d
            pool_op = nn.MaxPool3d if mode == "max" else nn.AvgPool3d
            self.pool_q = (
                pool_op(kernel_q, stride_q, padding_q, ceil_mode=False)
                if len(kernel_q) > 0
                else None  # Skip pooling if kernel is cleared
            )
            self.pool_k = (
                pool_op(kernel_kv, stride_kv, padding_kv, ceil_mode=False)
                if len(kernel_kv) > 0
                else None
            )
            self.pool_v = (
                pool_op(kernel_kv, stride_kv, padding_kv, ceil_mode=False)
                if len(kernel_kv) > 0
                else None
            )

        elif mode == "conv":  # use nn.Conv3d with depth wise conv and fixed channel setting
            self.pool_q = (
                nn.Conv3d(
                    head_dim,
                    head_dim,
                    kernel_q,
                    stride=stride_q,
                    padding=padding_q,
                    groups=head_dim,
                    bias=False,
                )
                if len(kernel_q) > 0
                else None
            )
            self.norm_q = norm_layer(head_dim) if len(kernel_q) > 0 else None

            self.pool_k = (
                nn.Conv3d(
                    head_dim,
                    head_dim,
                    kernel_kv,
                    stride=stride_kv,
                    padding=padding_kv,
                    groups=head_dim,
                    bias=False,
                )
                if len(kernel_kv) > 0
                else None
            )
            self.norm_k = norm_layer(head_dim) if len(kernel_kv) > 0 else None

            self.pool_v = (
                nn.Conv3d(
                    head_dim,
                    head_dim,
                    kernel_kv,
                    stride=stride_kv,
                    padding=padding_kv,
                    groups=head_dim,
                    bias=False,
                )
                if len(kernel_kv) > 0
                else None
            )
            self.norm_v = norm_layer(head_dim) if len(kernel_kv) > 0 else None
        else:
            raise NotImplementedError(f"Unsupported model {mode}")

    def forward(self, x, thw_shape):
        """

        x: Transformer feature patches

        thw_shape: reconstruction feature map shape

        """

        B, N, C = x.shape

        # step 1: duplicate projecting + head split: [B, N, C] -> [B, H, N, C/H]

        if self.pool_first:  # step a.1 embedding
            # head split [B, N, C] -> [B, N, H, C/H] -> [B, H, N, C/H]
            x = x.reshape(B, N, self.num_heads, C // self.num_heads).permute(
                0, 2, 1, 3
            )
            q = k = v = x

        else:  # step b.1 projecting first
            # mlp transform + head split: [B, N, C] -> [B, N, H, C/H] -> [B, H, N, C/H]
            # todo 这里我觉得可能共享mlp映射更好,能有更好的交互,但是分离mlp更节约计算量
            q = k = v = x
            q = (
                self.q(q)
                    .reshape(B, N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )
            k = (
                self.k(k)
                    .reshape(B, N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )
            v = (
                self.v(v)
                    .reshape(B, N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )

        # step 2: calculate attention_pool feature sequence and its shape
        # [B, H, N0, C/H] -> [B, H, N1, C/H]
        q, q_shape = attention_pool(
            q,
            self.pool_q,
            thw_shape,
            has_cls_embed=self.has_cls_embed,
            norm=self.norm_q if hasattr(self, "norm_q") else None,
        )
        k, k_shape = attention_pool(
            k,
            self.pool_k,
            thw_shape,
            has_cls_embed=self.has_cls_embed,
            norm=self.norm_k if hasattr(self, "norm_k") else None,
        )
        v, v_shape = attention_pool(
            v,
            self.pool_v,
            thw_shape,
            has_cls_embed=self.has_cls_embed,
            norm=self.norm_v if hasattr(self, "norm_v") else None,
        )

        if self.pool_first:  # step a.3 MLP projecting
            # calculate patch number, q_N, k_N, v_N
            q_N = (
                np.prod(q_shape) + 1
                if self.has_cls_embed
                else np.prod(q_shape)
            )
            k_N = (
                np.prod(k_shape) + 1
                if self.has_cls_embed
                else np.prod(k_shape)
            )
            v_N = (
                np.prod(v_shape) + 1
                if self.has_cls_embed
                else np.prod(v_shape)
            )

            # [B, H, N1, C/H] -> [B, N1, H, C/H] -> [B, N1, C] -> MLP
            # -> [B, N1, C] -> [B, N1, H, C/H] -> [B, H, N1, C/H]
            q = q.permute(0, 2, 1, 3).reshape(B, q_N, C)
            q = (
                self.q(q)
                    .reshape(B, q_N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )

            v = v.permute(0, 2, 1, 3).reshape(B, v_N, C)
            v = (
                self.v(v)
                    .reshape(B, v_N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )

            k = k.permute(0, 2, 1, 3).reshape(B, k_N, C)
            k = (
                self.k(k)
                    .reshape(B, k_N, self.num_heads, C // self.num_heads)
                    .permute(0, 2, 1, 3)
            )

        # step 3: attention calculation
        # multi-head self attention [B, H, N1, C/H] -> [B, H, N1, C/H]
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)

        # head squeeze [B, H, N1, C/H] -> [B, N1, H, C/H] -> [B, N1, C]
        N = q.shape[2]
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)

        # step 4: mlp stablization and dropout [B, N1, C] -> [B, N1, C]
        x = self.proj(x)
        if self.drop_rate > 0.0:
            x = self.proj_drop(x)

        return x, q_shape


'''

# case 1

model = MultiScaleAttention(768)

x = torch.randn(1, 197, 768)

y, thw = model(x, [1, 14, 14])

print(y.shape)





# case 2

kernel_q = (1, 2, 2)

kernel_kv = (1, 2, 2)

stride_q = (1, 2, 2)

stride_kv = (1, 2, 2)

# MultiScaleAttention 中设计以半个kernal size进行padding,向下取整



model = MultiScaleAttention(768, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv)

x = torch.randn(1, 197, 768)

y, thw = model(x, [1, 14, 14])



print(y.shape)  # 输出torch.Size([1, 65, 768]):不padding是7*7 由于padding变成8*8, 之后加上cls token

'''


class MultiScaleBlock(nn.Module):  # MViT Encoder
    """

    Attention module constructor



        input:

        tensor of (B, N, C)

        thw_shape: T, H, W  对应CNN的特征图形状(2D形状)T is video frams



        numpy.prob(T, H, W) == N(Num_patches) - 1 (cls token if it is there)



        output:

        tensor of (B, N_O, C)

        thw_shape: T_O, H_O, W_O



        :param dim: Transformer feature dim

        :param dim_out:



        :param num_heads: Transformer heads

        :param mlp_ratio: FFN hidden expansion

        :param qkv_bias: projecting bias

        :param drop_rate: dropout rate after attention calculation and mlp

        :param drop_path: dropout rate for SD

        :param act_layer: FFN act

        :param norm_layer: Pre Norm



        :param up_rate:

        :param kernel_q: pooling kernal size for q

        :param kernel_kv: pooling kernal size for k and v

        :param stride_q: pooling kernal stride for q

        :param stride_kv: pooling kernal stride for k and v



        :param has_cls_embed: if cls token is used

        :param mode: mode for attention pooling(downsampling) Options include `conv`, `avg`, and `max`.

        :param pool_first: process pooling(downsampling) before liner projecting



    """

    def __init__(

            self,

            dim,

            dim_out,

            num_heads=8,

            mlp_ratio=4.0,

            qkv_bias=False,

            drop_rate=0.0,

            drop_path=0.0,

            act_layer=nn.GELU,

            norm_layer=nn.LayerNorm,

            up_rate=None,

            kernel_q=(1, 1, 1),

            kernel_kv=(1, 1, 1),

            stride_q=(1, 1, 1),

            stride_kv=(1, 1, 1),

            has_cls_embed=True,

            mode="conv",

            pool_first=False,

    ):
        super().__init__()

        self.has_cls_embed = has_cls_embed

        # step 1: Attention projecting
        self.dim = dim
        self.dim_out = dim_out
        self.norm1 = norm_layer(dim)  # pre-norm

        self.attn = MultiScaleAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            drop_rate=drop_rate,
            kernel_q=kernel_q,
            kernel_kv=kernel_kv,
            stride_q=stride_q,
            stride_kv=stride_kv,
            norm_layer=nn.LayerNorm,
            has_cls_embed=self.has_cls_embed,
            mode=mode,
            pool_first=pool_first,
            )

        self.drop_path = (DropPath(drop_path) if drop_path > 0.0 else nn.Identity())

        # residual connection for Attention projecting
        kernel_skip = kernel_q  # fixme ori: [s + 1 if s > 1 else s for s in stride_q]
        stride_skip = stride_q
        padding_skip = [int(skip // 2) for skip in kernel_skip]  # 以半个kernal size进行padding,向下取整

        self.pool_skip = (
            nn.MaxPool3d(kernel_skip, stride_skip, padding_skip, ceil_mode=False)
            if len(kernel_skip) > 0
            else None)

        self.norm2 = norm_layer(dim)  # pre-norm

        # step 2: FFN projecting
        mlp_hidden_dim = int(dim * mlp_ratio)

        # here use FFN to encode feature into abstractive information in the dimension
        # TODO: check the use case for up_rate, and merge the following lines
        if up_rate is not None and up_rate > 1:
            mlp_dim_out = dim * up_rate
        else:
            mlp_dim_out = dim_out

        self.mlp = FFN(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            out_features=mlp_dim_out,
            act_layer=act_layer,
            drop=drop_rate,
        )

        # residual connection for FFN projecting
        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x, thw_shape):
        # step 1: Attention projecting
        x_block, thw_shape_new = self.attn(self.norm1(x), thw_shape)
        # residual connection for Attention projecting
        x_res, _ = attention_pool(x, self.pool_skip, thw_shape, has_cls_embed=self.has_cls_embed)
        x = x_res + self.drop_path(x_block)

        # step 2: FFN projecting
        x_norm = self.norm2(x)
        x_mlp = self.mlp(x_norm)
        # residual connection for FFN projecting
        if self.dim != self.dim_out:
            x = self.proj(x_norm)
        x = x + self.drop_path(x_mlp)

        return x, thw_shape_new


'''

# case 1

model = MultiScaleBlock(768,1024)

x = torch.randn(1, 197, 768)

y, thw = model(x, [1, 14, 14])

print(y.shape)  # torch.Size([1, 197, 1024])





# case 2

kernel_q = (1, 2, 2)

kernel_kv = (1, 2, 2)

stride_q = (1, 2, 2)

stride_kv = (1, 2, 2)

# MultiScaleAttention 中设计以半个kernal size进行padding,向下取整



model = MultiScaleBlock(768, 1024, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv)

x = torch.randn(1, 197, 768)

y, thw = model(x, [1, 14, 14])



print(y.shape)  # 输出torch.Size([1, 65, 1024]):不padding是7*7 由于padding变成8*8, 之后加上cls token

'''


class PatchEmbed(nn.Module):  # PatchEmbed from timm
    """

    Image to Patch Embedding

    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)

        # x: (B, 14*14, 768)
        return x


class Hybrid_feature_map_Embed(nn.Module):  # HybridEmbed from timm
    """

    CNN Feature Map Embedding, required backbone which is just for referance here

    Extract feature map from CNN, flatten, project to embedding dim.



    # input x.shape = batch, feature_dim, feature_size[0], feature_size[1]

    # output x.shape = batch, patch_number, patch_dim

    """

    def __init__(self, backbone, img_size=224, patch_size=1, feature_size=None, feature_dim=None,

                 in_chans=3, embed_dim=768):
        super().__init__()

        assert isinstance(backbone, nn.Module)

        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        self.img_size = img_size
        self.patch_size = patch_size
        self.backbone = backbone

        if feature_size is None or feature_dim is None:  # backbone output feature_size
            with torch.no_grad():
                # NOTE Most reliable way of determining output dims is to run forward pass
                training = backbone.training
                if training:
                    backbone.eval()
                o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
                if isinstance(o, (list, tuple)):
                    o = o[-1]  # last feature if backbone outputs list/tuple of features
                feature_size = o.shape[-2:]
                feature_dim = o.shape[1]
                backbone.train(training)
        else:
            feature_size = to_2tuple(feature_size)
            '''

            if hasattr(self.backbone, 'feature_info'):

                feature_dim = self.backbone.feature_info.channels()[-1]

            else:

                feature_dim = self.backbone.num_features

            '''

        assert feature_size[0] % patch_size[0] == 0 and feature_size[1] % patch_size[1] == 0

        self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1])  # patchlize

        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                              kernel_size=patch_size, stride=patch_size)

    def forward(self, x):
        x = self.backbone(x)
        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        x = self.proj(x).flatten(2).transpose(1, 2)  # shape = ( )
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output: x.shape = batch, patch_number, patch_dim
        return x


class Last_feature_map_Embed(nn.Module):
    """

    use this block to connect last CNN stage to the first Transformer block

    Extract feature map from CNN, flatten, project to embedding dim.



    # input x.shape = batch, feature_dim, feature_size[0], feature_size[1]

    # output x.shape = batch, patch_number, patch_dim

    """

    def __init__(self, patch_size=1, feature_size=(7, 7), feature_dim=2048, embed_dim=768,

                 Attention_module=None):
        super().__init__()

        # Attention module
        if Attention_module is not None:
            if Attention_module == 'SimAM':
                self.Attention_module = simam_module(e_lambda=1e-4)
            elif Attention_module == 'CBAM':
                self.Attention_module = cbam_module(gate_channels=feature_dim)
            elif Attention_module == 'SE':
                self.Attention_module = se_module(channel=feature_dim)
        else:
            self.Attention_module = None

        patch_size = to_2tuple(patch_size)
        self.patch_size = patch_size

        feature_size = to_2tuple(feature_size)

        # feature map should be matching the size
        assert feature_size[0] % self.patch_size[0] == 0 and feature_size[1] % self.patch_size[1] == 0

        self.grid_size = (feature_size[0] // self.patch_size[0], feature_size[1] // self.patch_size[1])  # patch

        self.num_patches = self.grid_size[0] * self.grid_size[1]

        # use the conv to split the patch by the following design:
        self.proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                              kernel_size=self.patch_size, stride=self.patch_size)

    def forward(self, x):
        if self.Attention_module is not None:
            x = self.Attention_module(x)

        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        x = self.proj(x).flatten(2).transpose(1, 2)
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output 格式 x.shape = batch, patch_number, patch_dim
        return x


class Focus_Embed(nn.Module):  # Attention guided module for hybridzing the early stages CNN feature
    """

    FGD Focus module

    Extract feature map from CNN, flatten, project to embedding dim. and use them as attention guidance



    input: x.shape = batch, feature_dim, feature_size[0], feature_size[1]



    Firstly, an attention block will be used to stable the feature projecting process



    Secondly, for each feature map,the focus will be 2 path: gaze and glance

    in gaze path Max pool will be applied to get prominent information

    in glance path Avg pool will be applied to get general information



    after the dual pooling path 2 seperate CNNs will be used to project the dimension

    Finally, flattern and transpose will be applied



    output 2 attention guidance: gaze, glance

    x.shape = batch, patch_number, patch_dim





    ref:

    ResNet50's feature map from different stages (edge size of 224)

    stage 1 output feature map: torch.Size([b, 256, 56, 56])

    stage 2 output feature map: torch.Size([b, 512, 28, 28])

    stage 3 output feature map: torch.Size([b, 1024, 14, 14])

    stage 4 output feature map: torch.Size([b, 2048, 7, 7])

    """

    def __init__(self, patch_size=1, target_feature_size=(7, 7), feature_size=(56, 56), feature_dim=256, embed_dim=768,

                 Attention_module=None, norm_layer=nn.LayerNorm):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        feature_size = to_2tuple(feature_size)  # patch size of the current feature map

        target_feature_size = to_2tuple(target_feature_size)  # patch size of the last feature map

        # cheak feature map can be patchlize to target_feature_size
        assert feature_size[0] % target_feature_size[0] == 0 and feature_size[1] % target_feature_size[1] == 0

        # cheak target_feature map can be patchlize to patch
        assert target_feature_size[0] % patch_size[0] == 0 and target_feature_size[1] % patch_size[1] == 0

        # Attention block
        if Attention_module is not None:
            if Attention_module == 'SimAM':
                self.Attention_module = simam_module(e_lambda=1e-4)
            elif Attention_module == 'CBAM':
                self.Attention_module = cbam_module(gate_channels=feature_dim)
            elif Attention_module == 'SE':
                self.Attention_module = se_module(channel=feature_dim)
        else:
            self.Attention_module = None

        # split focus ROI
        self.focus_size = (feature_size[0] // target_feature_size[0], feature_size[1] // target_feature_size[1])
        self.num_focus = self.focus_size[0] * self.focus_size[1]
        # by kernel_size=focus_size, stride=focus_size design
        # output_size=target_feature_size=7x7 so as to match the minist feature map

        self.gaze = nn.MaxPool2d(self.focus_size, stride=self.focus_size)
        self.glance = nn.AvgPool2d(self.focus_size, stride=self.focus_size)
        # x.shape:  batch, feature_dim, target_feature_size[0], target_feature_size[1]

        # split patch
        self.grid_size = (target_feature_size[0] // patch_size[0], target_feature_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        # use CNN to project dim to patch_dim
        self.gaze_proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                                   kernel_size=patch_size, stride=patch_size)
        self.glance_proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                                     kernel_size=patch_size, stride=patch_size)

        self.norm_q = norm_layer(embed_dim)  # Transformer nn.LayerNorm
        self.norm_k = norm_layer(embed_dim)  # Transformer nn.LayerNorm

    def forward(self, x):
        if self.Attention_module is not None:
            x = self.Attention_module(x)

        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        q = self.norm_q(self.gaze_proj(self.gaze(x)).flatten(2).transpose(1, 2))
        k = self.norm_k(self.glance_proj(self.glance(x)).flatten(2).transpose(1, 2))
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        gaze/glance(x).shape:  batch, feature_dim, target_feature_size[0], target_feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output x.shape = batch, patch_number, patch_dim
        return q, k


'''

# test sample

model = Focus_Embed()

x = torch.randn(4, 256, 56, 56)

y1,y2 = model(x)

print(y1.shape)

print(y2.shape)

'''


class Focus_SEmbed(nn.Module):  # Attention guided module for hybridzing the early stages CNN feature
    """



    self focus (q=k)  based on FGD Focus block



    Extract feature map from CNN, flatten, project to embedding dim. and use them as attention guidance



    input: x.shape = batch, feature_dim, feature_size[0], feature_size[1]



    Firstly, an attention block will be used to stable the feature projecting process



    Secondly, for each feature map,the focus will be 1 path: glance

    in glance path Avg pool will be applied to get general information



    after the pooling process 1 CNN will be used to project the dimension

    Finally, flattern and transpose will be applied



    output 2 attention guidance: glance, glance

    x.shape = batch, patch_number, patch_dim

    """

    def __init__(self, patch_size=1, target_feature_size=(7, 7), feature_size=(56, 56), feature_dim=256, embed_dim=768,

                 Attention_module=None, norm_layer=nn.LayerNorm):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        feature_size = to_2tuple(feature_size)

        target_feature_size = to_2tuple(target_feature_size)

        assert feature_size[0] % target_feature_size[0] == 0 and feature_size[1] % target_feature_size[1] == 0

        assert target_feature_size[0] % patch_size[0] == 0 and target_feature_size[1] % patch_size[1] == 0

        if Attention_module is not None:
            if Attention_module == 'SimAM':
                self.Attention_module = simam_module(e_lambda=1e-4)
            elif Attention_module == 'CBAM':
                self.Attention_module = cbam_module(gate_channels=feature_dim)
            elif Attention_module == 'SE':
                self.Attention_module = se_module(channel=feature_dim)
        else:
            self.Attention_module = None

        self.focus_size = (feature_size[0] // target_feature_size[0], feature_size[1] // target_feature_size[1])
        self.num_focus = self.focus_size[0] * self.focus_size[1]

        self.gaze = nn.MaxPool2d(self.focus_size, stride=self.focus_size)

        self.grid_size = (target_feature_size[0] // patch_size[0], target_feature_size[1] // patch_size[1])
        self.num_patches = self.grid_size[0] * self.grid_size[1]

        self.proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim, kernel_size=patch_size,
                              stride=patch_size)

        self.norm_f = norm_layer(embed_dim)

    def forward(self, x):
        if self.Attention_module is not None:
            x = self.Attention_module(x)

        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        q = self.norm_f(self.proj(self.gaze(x)).flatten(2).transpose(1, 2))
        k = q
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        gaze/glance(x).shape:  batch, feature_dim, target_feature_size[0], target_feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output x.shape = batch, patch_number, patch_dim
        return q, k


class Focus_Aggressive(nn.Module):  # Attention guided module for hybridzing the early stages CNN feature
    """

    Aggressive CNN Focus based on FGD Focus block



    Extract feature map from CNN, flatten, project to embedding dim. and use them as attention guidance



    input: x.shape = batch, feature_dim, feature_size[0], feature_size[1]



    Firstly, an attention block will be used to stable the feature projecting process



    Secondly, 2 CNNs will be used to project the dimension



    Finally, flattern and transpose will be applied



    output 2 attention guidance: gaze, glance

    x.shape = batch, patch_number, patch_dim



    """

    def __init__(self, patch_size=1, target_feature_size=(7, 7), feature_size=(56, 56), feature_dim=256, embed_dim=768,

                 Attention_module=None, norm_layer=nn.LayerNorm):
        super().__init__()
        patch_size = to_2tuple(patch_size)  # patch size of the last feature map
        feature_size = to_2tuple(feature_size)

        target_feature_size = to_2tuple(target_feature_size)

        assert feature_size[0] % target_feature_size[0] == 0 and feature_size[1] % target_feature_size[1] == 0

        assert target_feature_size[0] % patch_size[0] == 0 and target_feature_size[1] % patch_size[1] == 0

        if Attention_module is not None:
            if Attention_module == 'SimAM':
                self.Attention_module = simam_module(e_lambda=1e-4)
            elif Attention_module == 'CBAM':
                self.Attention_module = cbam_module(gate_channels=feature_dim)
            elif Attention_module == 'SE':
                self.Attention_module = se_module(channel=feature_dim)
        else:
            self.Attention_module = None

        self.focus_size = (feature_size[0] // target_feature_size[0], feature_size[1] // target_feature_size[1])

        self.grid_size = (self.focus_size[0] * patch_size[0], self.focus_size[1] * patch_size[1])
        self.num_patches = (feature_size[0] // self.grid_size[0]) * (feature_size[1] // self.grid_size[1])

        self.gaze_proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                                   kernel_size=self.grid_size, stride=self.grid_size)
        self.glance_proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                                     kernel_size=self.grid_size, stride=self.grid_size)

        self.norm_q = norm_layer(embed_dim)
        self.norm_k = norm_layer(embed_dim)

    def forward(self, x):
        if self.Attention_module is not None:
            x = self.Attention_module(x)

        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        q = self.norm_q(self.gaze_proj(x).flatten(2).transpose(1, 2))
        k = self.norm_k(self.glance_proj(x).flatten(2).transpose(1, 2))
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output x.shape = batch, patch_number, patch_dim
        return q, k


class Focus_SAggressive(nn.Module):  # Attention guided module for hybridzing the early stages CNN feature
    """

    Aggressive CNN self Focus

    Extract feature map from CNN, flatten, project to embedding dim. and use them as attention guidance



    input: x.shape = batch, feature_dim, feature_size[0], feature_size[1]



    Firstly, an attention block will be used to stable the feature projecting process



    Secondly, 1 CNN will be used to project the dimension



    Finally, flattern and transpose will be applied



    output 2 attention guidance: glance, glance

    x.shape = batch, patch_number, patch_dim

    """

    def __init__(self, patch_size=1, target_feature_size=(7, 7), feature_size=(56, 56), feature_dim=256, embed_dim=768,

                 Attention_module=None, norm_layer=nn.LayerNorm):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        feature_size = to_2tuple(feature_size)

        target_feature_size = to_2tuple(target_feature_size)

        assert feature_size[0] % target_feature_size[0] == 0 and feature_size[1] % target_feature_size[1] == 0

        assert target_feature_size[0] % patch_size[0] == 0 and target_feature_size[1] % patch_size[1] == 0

        if Attention_module is not None:
            if Attention_module == 'SimAM':
                self.Attention_module = simam_module(e_lambda=1e-4)
            elif Attention_module == 'CBAM':
                self.Attention_module = cbam_module(gate_channels=feature_dim)
            elif Attention_module == 'SE':
                self.Attention_module = se_module(channel=feature_dim)
        else:
            self.Attention_module = None

        self.focus_size = (feature_size[0] // target_feature_size[0], feature_size[1] // target_feature_size[1])

        self.grid_size = (self.focus_size[0] * patch_size[0], self.focus_size[1] * patch_size[1])
        self.num_patches = (feature_size[0] // self.grid_size[0]) * (feature_size[1] // self.grid_size[1])

        self.proj = nn.Conv2d(in_channels=feature_dim, out_channels=embed_dim,
                              kernel_size=self.grid_size, stride=self.grid_size)

        self.norm_f = norm_layer(embed_dim)

    def forward(self, x):
        if self.Attention_module is not None:
            x = self.Attention_module(x)

        if isinstance(x, (list, tuple)):
            x = x[-1]  # last feature if backbone outputs list/tuple of features

        q = self.norm_f(self.proj(x).flatten(2).transpose(1, 2))
        k = q
        """

        x.shape:  batch, feature_dim, feature_size[0], feature_size[1]

        proj(x).shape:  batch, embed_dim, patch_height_num, patch_width_num

        flatten(2).shape:  batch, embed_dim, patch_num

        .transpose(1, 2).shape:  batch feature_patch_number feature_patch_dim

        """
        # output x.shape = batch, patch_number, patch_dim
        return q, k


class VisionTransformer(nn.Module):  # From timm to review the ViT and ViT_resn5
    """

    Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`

        - https://arxiv.org/abs/2010.11929

    Includes distillation token & head support for `DeiT: Data-efficient Image Transformers`

        - https://arxiv.org/abs/2012.12877

    """

    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,

                 num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, drop_rate=0., attn_drop_rate=0.,

                 drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, act_layer=None):
        """

        Args:

            img_size (int, tuple): input image size

            patch_size (int, tuple): patch size

            in_chans (int): number of input channels

            num_classes (int): number of classes for classification head

            embed_dim (int): embedding dimension

            depth (int): depth of transformer

            num_heads (int): number of attention heads

            mlp_ratio (int): ratio of mlp hidden dim to embedding dim

            qkv_bias (bool): enable bias for qkv if True

            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set

            drop_rate (float): dropout rate

            attn_drop_rate (float): attention dropout rate

            drop_path_rate (float): stochastic depth rate

            embed_layer (nn.Module): patch embedding layer

            norm_layer: (nn.Module): normalization layer

        """
        super().__init__()
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_tokens = 1
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        self.patch_embed = embed_layer(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        self.blocks = nn.Sequential(*[
            Encoder_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
                          attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer)
            for i in range(depth)])

        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity()
        self.head_dist = None

    def forward_features(self, x):
        x = self.patch_embed(x)
        # print(x.shape,self.pos_embed.shape)
        cls_token = self.cls_token.expand(x.shape[0], -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_token, x), dim=1)
        x = self.pos_drop(x + self.pos_embed)

        x = self.blocks(x)
        x = self.norm(x)
        return self.pre_logits(x[:, 0])  # use cls token for cls head

    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)
        return x


class Stage_wise_hybrid_Transformer(nn.Module):
    """

    MSHT: Multi Stage Backbone Transformer

    Stem + 4 ResNet stages(Backbone)is used as backbone

    then, last feature map patch embedding is used to connect the CNN output to the decoder1 input



    horizonally, 4 ResNet Stage has its feature map connecting to the Focus module

    which we be use as attention guidance into the FGD decoder

    """

    def __init__(self, backbone, num_classes=1000, patch_size=1, embed_dim=768, depth=4, num_heads=8, mlp_ratio=4.,

                 qkv_bias=True, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,

                 use_cls_token=True, use_pos_embedding=True, use_att_module='SimAM', stage_size=(56, 28, 14, 7),

                 stage_dim=(256, 512, 1024, 2048), norm_layer=None, act_layer=None):
        """

        Args:

            backbone (nn.Module): input backbone = stem + 4 ResNet stages

            num_classes (int): number of classes for classification head

            patch_size (int, tuple): patch size

            embed_dim (int): embedding dimension

            depth (int): depth of transformer

            num_heads (int): number of attention heads

            mlp_ratio (int): ratio of mlp hidden dim to embedding dim

            qkv_bias (bool): enable bias for qkv if True

            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set

            drop_rate (float): dropout rate

            attn_drop_rate (float): attention dropout rate

            drop_path_rate (float): stochastic depth rate



            use_cls_token(bool): classification token

            use_pos_embedding(bool): use positional embedding

            use_att_module(str or None): use which attention module in embedding



            stage_size (int, tuple): the stage feature map size of ResNet stages

            stage_dim (int, tuple): the stage feature map dimension of ResNet stages

            norm_layer: (nn.Module): normalization layer

        """
        super().__init__()
        self.num_classes = num_classes
        if len(stage_dim) != len(stage_size):
            raise TypeError('stage_dim and stage_size mismatch!')
        else:
            self.stage_num = len(stage_dim)

        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.cls_token_num = 1 if use_cls_token else 0
        self.use_pos_embedding = use_pos_embedding

        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
        act_layer = act_layer or nn.GELU

        # backbone CNN
        self.backbone = backbone

        # Attention module
        if use_att_module is not None:
            if use_att_module in ['SimAM', 'CBAM', 'SE']:
                Attention_module = use_att_module
            else:
                Attention_module = None
        else:
            Attention_module = None

        self.patch_embed = Last_feature_map_Embed(patch_size=patch_size, feature_size=stage_size[-1],
                                                  feature_dim=stage_dim[-1], embed_dim=self.embed_dim,
                                                  Attention_module=Attention_module)
        num_patches = self.patch_embed.num_patches

        # global sharing cls token and positional embedding
        self.cls_token_0 = nn.Parameter(torch.zeros(1, 1, embed_dim))  # like message token
        if self.use_pos_embedding:
            self.pos_embed_0 = nn.Parameter(torch.zeros(1, num_patches + self.cls_token_num, embed_dim))

        '''

        self.cls_token_1 = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.pos_embed_1 = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))



        self.cls_token_2 = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.pos_embed_2 = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))



        self.cls_token_3 = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.pos_embed_3 = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))



        self.cls_token_4 = nn.Parameter(torch.zeros(1, 1, embed_dim))

        self.pos_embed_4 = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))

        '''

        self.pos_drop = nn.Dropout(p=drop_rate)
        # stochastic depth
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule

        self.dec1 = Decoder_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                                  drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[0], norm_layer=norm_layer,
                                  act_layer=act_layer)
        self.Fo1 = Focus_Embed(patch_size=patch_size, target_feature_size=stage_size[-1], feature_size=stage_size[0],
                               feature_dim=stage_dim[0], embed_dim=embed_dim, Attention_module=Attention_module,
                               norm_layer=norm_layer)

        self.dec2 = Decoder_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                                  drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[1], norm_layer=norm_layer,
                                  act_layer=act_layer)
        self.Fo2 = Focus_Embed(patch_size=patch_size, target_feature_size=stage_size[-1], feature_size=stage_size[1],
                               feature_dim=stage_dim[1], embed_dim=embed_dim, Attention_module=Attention_module,
                               norm_layer=norm_layer)

        self.dec3 = Decoder_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                                  drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[2], norm_layer=norm_layer,
                                  act_layer=act_layer)
        self.Fo3 = Focus_Embed(patch_size=patch_size, target_feature_size=stage_size[-1], feature_size=stage_size[2],
                               feature_dim=stage_dim[2], embed_dim=embed_dim, Attention_module=Attention_module,
                               norm_layer=norm_layer)

        if self.stage_num == 4:
            self.dec4 = Decoder_Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
                                      drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[3], norm_layer=norm_layer,
                                      act_layer=act_layer)
            self.Fo4 = Focus_Embed(patch_size=patch_size, target_feature_size=stage_size[-1],
                                   feature_size=stage_size[-1],
                                   feature_dim=stage_dim[-1], embed_dim=embed_dim, Attention_module=Attention_module,
                                   norm_layer=norm_layer)

        self.norm = norm_layer(embed_dim)

        # Representation layer
        if representation_size:
            self.num_features = representation_size
            self.pre_logits = nn.Sequential(OrderedDict([
                ('fc', nn.Linear(embed_dim, representation_size)),
                ('act', nn.Tanh())
            ]))
        else:
            self.pre_logits = nn.Identity()

        # Classifier head(s)
        self.head = nn.Linear(self.num_features, self.num_classes) if self.num_classes > 0 else nn.Identity()
        self.head_dist = None

    def forward_features(self, x):
        if self.stage_num == 3:
            stage1_out, stage2_out, stage3_out = self.backbone(x)
            # embedding the last feature map
            x = self.patch_embed(stage3_out)

        elif self.stage_num == 4:
            stage1_out, stage2_out, stage3_out, stage4_out = self.backbone(x)
            # embedding the last feature map
            x = self.patch_embed(stage4_out)
        else:
            raise TypeError('stage_dim is not legal !')

        # get guidance info
        s1_q, s1_k = self.Fo1(stage1_out)
        s2_q, s2_k = self.Fo2(stage2_out)
        s3_q, s3_k = self.Fo3(stage3_out)
        if self.stage_num == 4:
            s4_q, s4_k = self.Fo4(stage4_out)

        if self.cls_token_num != 0:  # concat cls token
            # process the(cls token / message token)
            cls_token_0 = self.cls_token_0.expand(x.shape[0], -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
            x = torch.cat((cls_token_0, x), dim=1)  # 增加classification head patch

            s1_q = torch.cat((cls_token_0, s1_q), dim=1)
            s1_k = torch.cat((cls_token_0, s1_k), dim=1)
            s2_q = torch.cat((cls_token_0, s2_q), dim=1)
            s2_k = torch.cat((cls_token_0, s2_k), dim=1)
            s3_q = torch.cat((cls_token_0, s3_q), dim=1)
            s3_k = torch.cat((cls_token_0, s3_k), dim=1)
            if self.stage_num == 4:
                s4_q = torch.cat((cls_token_0, s4_q), dim=1)
                s4_k = torch.cat((cls_token_0, s4_k), dim=1)

        if self.use_pos_embedding:

            s1_q = self.pos_drop(s1_q + self.pos_embed_0)
            s1_k = self.pos_drop(s1_k + self.pos_embed_0)
            s2_q = self.pos_drop(s2_q + self.pos_embed_0)
            s2_k = self.pos_drop(s2_k + self.pos_embed_0)
            s3_q = self.pos_drop(s3_q + self.pos_embed_0)
            s3_k = self.pos_drop(s3_k + self.pos_embed_0)
            if self.stage_num == 4:
                s4_q = self.pos_drop(s4_q + self.pos_embed_0)
                s4_k = self.pos_drop(s4_k + self.pos_embed_0)

            # plus to encoding positional infor
            x = self.pos_drop(x + self.pos_embed_0)

        else:

            s1_q = self.pos_drop(s1_q)
            s1_k = self.pos_drop(s1_k)
            s2_q = self.pos_drop(s2_q)
            s2_k = self.pos_drop(s2_k)
            s3_q = self.pos_drop(s3_q)
            s3_k = self.pos_drop(s3_k)
            if self.stage_num == 4:
                s4_q = self.pos_drop(s4_q)
                s4_k = self.pos_drop(s4_k)

            # stem's feature map
            x = self.pos_drop(x)

        # Decoder module use the guidance to help global modeling process

        x = self.dec1(s1_q, s1_k, x)

        x = self.dec2(s2_q, s2_k, x)

        x = self.dec3(s3_q, s3_k, x)

        if self.stage_num == 4:
            x = self.dec4(s4_q, s4_k, x)

        x = self.norm(x)
        return self.pre_logits(x[:, 0])  # take the first cls token

    def forward(self, x):
        x = self.forward_features(x)  # connect the cls token to the cls head
        x = self.head(x)
        return x