File size: 18,602 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
"""
get model func Script ver: Dec 5th 14:20
"""
import os
import sys
sys.path.append(os.path.realpath('.'))
import torch
import torch.nn as nn
from torchvision import models
from Backbone import ResHybrid
# get model
def get_model(num_classes=1000, edge_size=224, model_idx=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
pretrained_backbone=True, use_cls_token=True, use_pos_embedding=True, use_att_module='SimAM'):
"""
:param num_classes: classification required number of your dataset
:param edge_size: the input edge size of the dataloder
:param model_idx: the model we are going to use. by the format of Model_size_other_info
:param drop_rate: The dropout layer's probility of proposed models
:param attn_drop_rate: The dropout layer(right after the MHSA block or MHGA block)'s probility of proposed models
:param drop_path_rate: The probility of stochastic depth
:param pretrained_backbone: The backbone CNN is initiate randomly or by its official Pretrained models
:param use_cls_token: To use the class token
:param use_pos_embedding: To use the positional enbedding
:param use_att_module: To use which attention module in the FGD Focus block
:return: prepared model
"""
if model_idx[0:5] == 'ViT_h':
# Transfer learning for ViT
import timm
from pprint import pprint
model_names = timm.list_models('*vit*')
pprint(model_names)
if edge_size == 224:
model = timm.create_model('vit_huge_patch14_224_in21k', pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('not a avaliable image size with', model_idx)
elif model_idx[0:5] == 'ViT_l':
# Transfer learning for ViT
import timm
from pprint import pprint
model_names = timm.list_models('*vit*')
pprint(model_names)
if edge_size == 224:
model = timm.create_model('vit_large_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
elif edge_size == 384:
model = timm.create_model('vit_large_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('not a avaliable image size with', model_idx)
elif model_idx[0:5] == 'ViT_s':
# Transfer learning for ViT
import timm
from pprint import pprint
model_names = timm.list_models('*vit*')
pprint(model_names)
if edge_size == 224:
model = timm.create_model('vit_small_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
elif edge_size == 384:
model = timm.create_model('vit_small_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('not a avaliable image size with', model_idx)
elif model_idx[0:5] == 'ViT_t':
# Transfer learning for ViT
import timm
from pprint import pprint
model_names = timm.list_models('*vit*')
pprint(model_names)
if edge_size == 224:
model = timm.create_model('vit_tiny_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
elif edge_size == 384:
model = timm.create_model('vit_tiny_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('not a avaliable image size with', model_idx)
elif model_idx[0:5] == 'ViT_b' or model_idx[0:3] == 'ViT': # vit_base
# Transfer learning for ViT
import timm
from pprint import pprint
model_names = timm.list_models('*vit*')
pprint(model_names)
if edge_size == 224:
model = timm.create_model('vit_base_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
elif edge_size == 384:
model = timm.create_model('vit_base_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('not a avaliable image size with', model_idx)
elif model_idx[0:3] == 'vgg':
# Transfer learning for vgg16_bn
import timm
from pprint import pprint
model_names = timm.list_models('*vgg*')
pprint(model_names)
if model_idx[0:8] == 'vgg16_bn':
model = timm.create_model('vgg16_bn', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:5] == 'vgg16':
model = timm.create_model('vgg16', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:8] == 'vgg19_bn':
model = timm.create_model('vgg19_bn', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:5] == 'vgg19':
model = timm.create_model('vgg19', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:4] == 'deit': # Transfer learning for DeiT
import timm
from pprint import pprint
model_names = timm.list_models('*deit*')
pprint(model_names)
if edge_size == 384:
model = timm.create_model('deit_base_patch16_384', pretrained=pretrained_backbone, num_classes=2)
elif edge_size == 224:
model = timm.create_model('deit_base_patch16_224', pretrained=pretrained_backbone, num_classes=2)
else:
pass
elif model_idx[0:5] == 'twins': # Transfer learning for twins
import timm
from pprint import pprint
model_names = timm.list_models('*twins*')
pprint(model_names)
model = timm.create_model('twins_pcpvt_base', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:5] == 'pit_b' and edge_size == 224: # Transfer learning for PiT
import timm
from pprint import pprint
model_names = timm.list_models('*pit*')
pprint(model_names)
model = timm.create_model('pit_b_224', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:5] == 'gcvit' and edge_size == 224: # Transfer learning for gcvit
import timm
from pprint import pprint
model_names = timm.list_models('*gcvit*')
pprint(model_names)
model = timm.create_model('gcvit_base', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:6] == 'xcit_s': # Transfer learning for XCiT
import timm
from pprint import pprint
model_names = timm.list_models('*xcit*')
pprint(model_names)
if edge_size == 384:
model = timm.create_model('xcit_small_12_p16_384_dist', pretrained=pretrained_backbone,
num_classes=num_classes)
elif edge_size == 224:
model = timm.create_model('xcit_small_12_p16_224_dist', pretrained=pretrained_backbone,
num_classes=num_classes)
else:
pass
elif model_idx[0:6] == 'xcit_m': # Transfer learning for XCiT
import timm
from pprint import pprint
model_names = timm.list_models('*xcit*')
pprint(model_names)
if edge_size == 384:
model = timm.create_model('xcit_medium_24_p16_384_dist', pretrained=pretrained_backbone,
num_classes=num_classes)
elif edge_size == 224:
model = timm.create_model('xcit_medium_24_p16_224_dist', pretrained=pretrained_backbone,
num_classes=num_classes)
else:
pass
elif model_idx[0:6] == 'mvitv2': # Transfer learning for MViT v2 small fixme bug in model!
import timm
from pprint import pprint
model_names = timm.list_models('*mvitv2*')
pprint(model_names)
model = timm.create_model('mvitv2_small_cls', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:6] == 'convit' and edge_size == 224: # Transfer learning for ConViT fixme bug in model!
import timm
from pprint import pprint
model_names = timm.list_models('*convit*')
pprint(model_names)
model = timm.create_model('convit_base', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:6] == 'ResNet': # Transfer learning for the ResNets
if model_idx[0:8] == 'ResNet34':
model = models.resnet34(pretrained=pretrained_backbone)
elif model_idx[0:8] == 'ResNet50':
model = models.resnet50(pretrained=pretrained_backbone)
elif model_idx[0:9] == 'ResNet101':
model = models.resnet101(pretrained=pretrained_backbone)
else:
print('this model is not defined in get model')
return -1
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes)
elif model_idx[0:6] == 'Backbone': # ours: MSHT
# NOTICE: HERE 'pretrained' controls only The backbone CNN is initiate randomly
# or by its official Pretrained models
model = ResHybrid.create_model(model_idx, edge_size, pretrained=pretrained_backbone, num_classes=num_classes,
drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate, use_cls_token=use_cls_token,
use_pos_embedding=use_pos_embedding, use_att_module=use_att_module)
elif model_idx[0:7] == 'bot_256' and edge_size == 256: # Model: BoT
import timm
from pprint import pprint
model_names = timm.list_models('*bot*')
pprint(model_names)
# NOTICE: we find no weight for BoT in timm
# ['botnet26t_256', 'botnet50ts_256', 'eca_botnext26ts_256']
model = timm.create_model('botnet26t_256', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:8] == 'densenet': # Transfer learning for densenet
import timm
from pprint import pprint
model_names = timm.list_models('*densenet*')
pprint(model_names)
model = timm.create_model('densenet121', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:8] == 'xception': # Transfer learning for Xception
import timm
from pprint import pprint
model_names = timm.list_models('*xception*')
pprint(model_names)
model = timm.create_model('xception', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:9] == 'pvt_v2_b0': # Transfer learning for PVT v2 (todo not okey with torch summary)
import timm
from pprint import pprint
model_names = timm.list_models('*pvt_v2*')
pprint(model_names)
model = timm.create_model('pvt_v2_b0', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:9] == 'visformer' and edge_size == 224: # Transfer learning for Visformer
import timm
from pprint import pprint
model_names = timm.list_models('*visformer*')
pprint(model_names)
model = timm.create_model('visformer_small', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:9] == 'conformer': # Transfer learning for Conformer base
from Backbone.counterpart_models import conformer
embed_dim = 576
channel_ratio = 6
if pretrained_backbone:
model = conformer.Conformer(num_classes=1000, patch_size=16, channel_ratio=channel_ratio,
embed_dim=embed_dim, depth=12, num_heads=9, mlp_ratio=4, qkv_bias=True)
# this is the related path to <code>, not <Backbone>
save_model_path = '../saved_models/Conformer_base_patch16.pth' # fixme model is downloaded at this path
# downloaded from official model state at https://github.com/pengzhiliang/Conformer
model.load_state_dict(torch.load(save_model_path), False)
model.trans_cls_head = nn.Linear(embed_dim, num_classes)
model.conv_cls_head = nn.Linear(int(256 * channel_ratio), num_classes)
model.cls_head = nn.Linear(int(2 * num_classes), num_classes)
else:
model = conformer.Conformer(num_classes=num_classes, patch_size=16, channel_ratio=channel_ratio,
embed_dim=embed_dim, depth=12, num_heads=9, mlp_ratio=4, qkv_bias=True)
elif model_idx[0:9] == 'coat_mini' and edge_size == 224: # Transfer learning for coat_mini
import timm
from pprint import pprint
model_names = timm.list_models('*coat*')
pprint(model_names)
model = timm.create_model('coat_mini', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:10] == 'swin_b_384' and edge_size == 384: # Transfer learning for Swin Transformer (swin_b_384)
import timm
from pprint import pprint
model_names = timm.list_models('*swin*')
pprint(model_names) # swin_base_patch4_window12_384 swin_base_patch4_window12_384_in22k
model = timm.create_model('swin_base_patch4_window12_384', pretrained=pretrained_backbone,
num_classes=num_classes)
elif model_idx[0:10] == 'swin_b_224' and edge_size == 224: # Transfer learning for Swin Transformer (swin_b_384)
import timm
from pprint import pprint
model_names = timm.list_models('*swin*')
pprint(model_names) # swin_base_patch4_window7_224 swin_base_patch4_window7_224_in22k
model = timm.create_model('swin_base_patch4_window7_224', pretrained=pretrained_backbone,
num_classes=num_classes)
elif model_idx[0:11] == 'mobilenetv3': # Transfer learning for mobilenetv3
import timm
from pprint import pprint
model_names = timm.list_models('*mobilenet*')
pprint(model_names)
model = timm.create_model('mobilenetv3_large_100', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:11] == 'mobilevit_s': # Transfer learning for mobilevit_s
import timm
from pprint import pprint
model_names = timm.list_models('*mobilevit*')
pprint(model_names)
model = timm.create_model('mobilevit_s', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:11] == 'inceptionv3': # Transfer learning for Inception v3
import timm
from pprint import pprint
model_names = timm.list_models('*inception*')
pprint(model_names)
model = timm.create_model('inception_v3', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:12] == 'cross_former' and edge_size == 224: # Transfer learning for crossformer base
from Backbone.counterpart_models import crossformer
backbone = crossformer.CrossFormer(img_size=edge_size,
patch_size=[4, 8, 16, 32],
in_chans=3,
num_classes=0, # get backbone only
embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
group_size=[7, 7, 7, 7],
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.0,
drop_path_rate=0.3,
ape=False,
patch_norm=True,
use_checkpoint=False,
merge_size=[[2, 4], [2, 4], [2, 4]], )
if pretrained_backbone:
save_model_path = '../saved_models/crossformer-b.pth' # fixme model is downloaded at this path
# downloaded from official model state at https://github.com/cheerss/CrossFormer
backbone.load_state_dict(torch.load(save_model_path)['model'], False)
model = crossformer.cross_former_cls_head_warp(backbone, num_classes)
elif model_idx[0:13] == 'crossvit_base': # Transfer learning for crossvit_base (todo not okey with torch summary)
import timm
from pprint import pprint
model_names = timm.list_models('*crossvit_base*')
pprint(model_names)
model = timm.create_model('crossvit_base_240', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:14] == 'efficientnet_b': # Transfer learning for efficientnet_b3,4
import timm
from pprint import pprint
model_names = timm.list_models('*efficientnet*')
pprint(model_names)
model = timm.create_model(model_idx[0:15], pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:14] == 'ResN50_ViT_384': # ResNet+ViT融合模型384
import timm
from pprint import pprint
model_names = timm.list_models('*vit_base_resnet*')
pprint(model_names)
model = timm.create_model('vit_base_resnet50_384', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:15] == 'coat_lite_small' and edge_size == 224: # Transfer learning for coat_lite_small
import timm
from pprint import pprint
model_names = timm.list_models('*coat*')
pprint(model_names)
model = timm.create_model('coat_lite_small', pretrained=pretrained_backbone, num_classes=num_classes)
elif model_idx[0:17] == 'efficientformer_l' and edge_size == 224: # Transfer learning for efficientnet_b3,4
import timm
from pprint import pprint
model_names = timm.list_models('*efficientformer*')
pprint(model_names)
model = timm.create_model(model_idx[0:18], pretrained=pretrained_backbone, num_classes=num_classes)
else:
print('\nThe model', model_idx, 'with the edge size of', edge_size)
print("is not defined in the script!!", '\n')
return -1
try:
img = torch.randn(1, 3, edge_size, edge_size)
preds = model(img) # (1, class_number)
print('test model output:', preds)
except:
print("Problem exist in the model defining process!!")
return -1
else:
print('model is ready now!')
return model
|