File size: 18,602 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
"""
get model func    Script  ver: Dec 5th 14:20
"""
import os
import sys
sys.path.append(os.path.realpath('.'))

import torch
import torch.nn as nn
from torchvision import models
from Backbone import ResHybrid


# get model
def get_model(num_classes=1000, edge_size=224, model_idx=None, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0,
              pretrained_backbone=True, use_cls_token=True, use_pos_embedding=True, use_att_module='SimAM'):
    """
    :param num_classes: classification required number of your dataset
    :param edge_size: the input edge size of the dataloder
    :param model_idx: the model we are going to use. by the format of Model_size_other_info

    :param drop_rate: The dropout layer's probility of proposed models
    :param attn_drop_rate: The dropout layer(right after the MHSA block or MHGA block)'s probility of proposed models
    :param drop_path_rate: The probility of stochastic depth

    :param pretrained_backbone: The backbone CNN is initiate randomly or by its official Pretrained models

    :param use_cls_token: To use the class token
    :param use_pos_embedding: To use the positional enbedding
    :param use_att_module: To use which attention module in the FGD Focus block

    :return: prepared model
    """
    if model_idx[0:5] == 'ViT_h':
        # Transfer learning for ViT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit*')
        pprint(model_names)
        if edge_size == 224:
            model = timm.create_model('vit_huge_patch14_224_in21k', pretrained=pretrained_backbone, num_classes=num_classes)
        else:
            print('not a avaliable image size with', model_idx)

    elif model_idx[0:5] == 'ViT_l':
        # Transfer learning for ViT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit*')
        pprint(model_names)
        if edge_size == 224:
            model = timm.create_model('vit_large_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
        elif edge_size == 384:
            model = timm.create_model('vit_large_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
        else:
            print('not a avaliable image size with', model_idx)

    elif model_idx[0:5] == 'ViT_s':
        # Transfer learning for ViT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit*')
        pprint(model_names)
        if edge_size == 224:
            model = timm.create_model('vit_small_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
        elif edge_size == 384:
            model = timm.create_model('vit_small_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
        else:
            print('not a avaliable image size with', model_idx)

    elif model_idx[0:5] == 'ViT_t':
        # Transfer learning for ViT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit*')
        pprint(model_names)
        if edge_size == 224:
            model = timm.create_model('vit_tiny_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
        elif edge_size == 384:
            model = timm.create_model('vit_tiny_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
        else:
            print('not a avaliable image size with', model_idx)

    elif model_idx[0:5] == 'ViT_b' or model_idx[0:3] == 'ViT':  # vit_base
        # Transfer learning for ViT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit*')
        pprint(model_names)
        if edge_size == 224:
            model = timm.create_model('vit_base_patch16_224', pretrained=pretrained_backbone, num_classes=num_classes)
        elif edge_size == 384:
            model = timm.create_model('vit_base_patch16_384', pretrained=pretrained_backbone, num_classes=num_classes)
        else:
            print('not a avaliable image size with', model_idx)

    elif model_idx[0:3] == 'vgg':
        # Transfer learning for vgg16_bn
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vgg*')
        pprint(model_names)
        if model_idx[0:8] == 'vgg16_bn':
            model = timm.create_model('vgg16_bn', pretrained=pretrained_backbone, num_classes=num_classes)
        elif model_idx[0:5] == 'vgg16':
            model = timm.create_model('vgg16', pretrained=pretrained_backbone, num_classes=num_classes)
        elif model_idx[0:8] == 'vgg19_bn':
            model = timm.create_model('vgg19_bn', pretrained=pretrained_backbone, num_classes=num_classes)
        elif model_idx[0:5] == 'vgg19':
            model = timm.create_model('vgg19', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:4] == 'deit':  # Transfer learning for DeiT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*deit*')
        pprint(model_names)
        if edge_size == 384:
            model = timm.create_model('deit_base_patch16_384', pretrained=pretrained_backbone, num_classes=2)
        elif edge_size == 224:
            model = timm.create_model('deit_base_patch16_224', pretrained=pretrained_backbone, num_classes=2)
        else:
            pass

    elif model_idx[0:5] == 'twins':  # Transfer learning for twins
        import timm
        from pprint import pprint

        model_names = timm.list_models('*twins*')
        pprint(model_names)
        model = timm.create_model('twins_pcpvt_base', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:5] == 'pit_b' and edge_size == 224:  # Transfer learning for PiT
        import timm
        from pprint import pprint

        model_names = timm.list_models('*pit*')
        pprint(model_names)
        model = timm.create_model('pit_b_224', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:5] == 'gcvit' and edge_size == 224:  # Transfer learning for gcvit
        import timm
        from pprint import pprint

        model_names = timm.list_models('*gcvit*')
        pprint(model_names)
        model = timm.create_model('gcvit_base', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:6] == 'xcit_s':  # Transfer learning for XCiT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*xcit*')
        pprint(model_names)
        if edge_size == 384:
            model = timm.create_model('xcit_small_12_p16_384_dist', pretrained=pretrained_backbone,
                                      num_classes=num_classes)
        elif edge_size == 224:
            model = timm.create_model('xcit_small_12_p16_224_dist', pretrained=pretrained_backbone,
                                      num_classes=num_classes)
        else:
            pass

    elif model_idx[0:6] == 'xcit_m':  # Transfer learning for XCiT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*xcit*')
        pprint(model_names)
        if edge_size == 384:
            model = timm.create_model('xcit_medium_24_p16_384_dist', pretrained=pretrained_backbone,
                                      num_classes=num_classes)
        elif edge_size == 224:
            model = timm.create_model('xcit_medium_24_p16_224_dist', pretrained=pretrained_backbone,
                                      num_classes=num_classes)
        else:
            pass

    elif model_idx[0:6] == 'mvitv2':  # Transfer learning for MViT v2 small  fixme bug in model!
        import timm
        from pprint import pprint
        model_names = timm.list_models('*mvitv2*')
        pprint(model_names)
        model = timm.create_model('mvitv2_small_cls', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:6] == 'convit' and edge_size == 224:  # Transfer learning for ConViT fixme bug in model!
        import timm
        from pprint import pprint

        model_names = timm.list_models('*convit*')
        pprint(model_names)
        model = timm.create_model('convit_base', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:6] == 'ResNet':  # Transfer learning for the ResNets
        if model_idx[0:8] == 'ResNet34':
            model = models.resnet34(pretrained=pretrained_backbone)
        elif model_idx[0:8] == 'ResNet50':
            model = models.resnet50(pretrained=pretrained_backbone)
        elif model_idx[0:9] == 'ResNet101':
            model = models.resnet101(pretrained=pretrained_backbone)
        else:
            print('this model is not defined in get model')
            return -1
        num_ftrs = model.fc.in_features
        model.fc = nn.Linear(num_ftrs, num_classes)

    elif model_idx[0:6] == 'Backbone':  # ours: MSHT
        # NOTICE: HERE 'pretrained' controls only The backbone CNN is initiate randomly
        # or by its official Pretrained models
        model = ResHybrid.create_model(model_idx, edge_size, pretrained=pretrained_backbone, num_classes=num_classes,
                                       drop_rate=drop_rate, attn_drop_rate=attn_drop_rate,
                                       drop_path_rate=drop_path_rate, use_cls_token=use_cls_token,
                                       use_pos_embedding=use_pos_embedding, use_att_module=use_att_module)

    elif model_idx[0:7] == 'bot_256' and edge_size == 256:  # Model: BoT
        import timm
        from pprint import pprint
        model_names = timm.list_models('*bot*')
        pprint(model_names)
        # NOTICE: we find no weight for BoT in timm
        # ['botnet26t_256', 'botnet50ts_256', 'eca_botnext26ts_256']
        model = timm.create_model('botnet26t_256', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:8] == 'densenet':  # Transfer learning for densenet
        import timm
        from pprint import pprint

        model_names = timm.list_models('*densenet*')
        pprint(model_names)
        model = timm.create_model('densenet121', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:8] == 'xception':  # Transfer learning for Xception
        import timm
        from pprint import pprint
        model_names = timm.list_models('*xception*')
        pprint(model_names)
        model = timm.create_model('xception', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:9] == 'pvt_v2_b0':  # Transfer learning for PVT v2 (todo not okey with torch summary)
        import timm
        from pprint import pprint
        model_names = timm.list_models('*pvt_v2*')
        pprint(model_names)
        model = timm.create_model('pvt_v2_b0', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:9] == 'visformer' and edge_size == 224:  # Transfer learning for Visformer
        import timm
        from pprint import pprint
        model_names = timm.list_models('*visformer*')
        pprint(model_names)
        model = timm.create_model('visformer_small', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:9] == 'conformer':  # Transfer learning for Conformer base
        from Backbone.counterpart_models import conformer

        embed_dim = 576
        channel_ratio = 6

        if pretrained_backbone:
            model = conformer.Conformer(num_classes=1000, patch_size=16, channel_ratio=channel_ratio,
                                        embed_dim=embed_dim, depth=12, num_heads=9, mlp_ratio=4, qkv_bias=True)
            # this is the related path to <code>, not <Backbone>
            save_model_path = '../saved_models/Conformer_base_patch16.pth'  # fixme model is downloaded at this path
            # downloaded from official model state at https://github.com/pengzhiliang/Conformer
            model.load_state_dict(torch.load(save_model_path), False)

            model.trans_cls_head = nn.Linear(embed_dim, num_classes)
            model.conv_cls_head = nn.Linear(int(256 * channel_ratio), num_classes)
            model.cls_head = nn.Linear(int(2 * num_classes), num_classes)

        else:
            model = conformer.Conformer(num_classes=num_classes, patch_size=16, channel_ratio=channel_ratio,
                                        embed_dim=embed_dim, depth=12, num_heads=9, mlp_ratio=4, qkv_bias=True)

    elif model_idx[0:9] == 'coat_mini' and edge_size == 224:  # Transfer learning for coat_mini
        import timm
        from pprint import pprint

        model_names = timm.list_models('*coat*')
        pprint(model_names)
        model = timm.create_model('coat_mini', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:10] == 'swin_b_384' and edge_size == 384:  # Transfer learning for Swin Transformer (swin_b_384)
        import timm
        from pprint import pprint
        model_names = timm.list_models('*swin*')
        pprint(model_names)  # swin_base_patch4_window12_384  swin_base_patch4_window12_384_in22k
        model = timm.create_model('swin_base_patch4_window12_384', pretrained=pretrained_backbone,
                                  num_classes=num_classes)

    elif model_idx[0:10] == 'swin_b_224' and edge_size == 224:  # Transfer learning for Swin Transformer (swin_b_384)
        import timm
        from pprint import pprint
        model_names = timm.list_models('*swin*')
        pprint(model_names)  # swin_base_patch4_window7_224  swin_base_patch4_window7_224_in22k
        model = timm.create_model('swin_base_patch4_window7_224', pretrained=pretrained_backbone,
                                  num_classes=num_classes)

    elif model_idx[0:11] == 'mobilenetv3':  # Transfer learning for mobilenetv3
        import timm
        from pprint import pprint
        model_names = timm.list_models('*mobilenet*')
        pprint(model_names)
        model = timm.create_model('mobilenetv3_large_100', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:11] == 'mobilevit_s':  # Transfer learning for mobilevit_s
        import timm
        from pprint import pprint
        model_names = timm.list_models('*mobilevit*')
        pprint(model_names)
        model = timm.create_model('mobilevit_s', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:11] == 'inceptionv3':  # Transfer learning for Inception v3
        import timm
        from pprint import pprint
        model_names = timm.list_models('*inception*')
        pprint(model_names)
        model = timm.create_model('inception_v3', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:12] == 'cross_former' and edge_size == 224:  # Transfer learning for crossformer base
        from Backbone.counterpart_models import crossformer
        backbone = crossformer.CrossFormer(img_size=edge_size,
                                           patch_size=[4, 8, 16, 32],
                                           in_chans=3,
                                           num_classes=0,  # get backbone only
                                           embed_dim=96,
                                           depths=[2, 2, 18, 2],
                                           num_heads=[3, 6, 12, 24],
                                           group_size=[7, 7, 7, 7],
                                           mlp_ratio=4.,
                                           qkv_bias=True,
                                           qk_scale=None,
                                           drop_rate=0.0,
                                           drop_path_rate=0.3,
                                           ape=False,
                                           patch_norm=True,
                                           use_checkpoint=False,
                                           merge_size=[[2, 4], [2, 4], [2, 4]], )
        if pretrained_backbone:
            save_model_path = '../saved_models/crossformer-b.pth'  # fixme model is downloaded at this path
            # downloaded from official model state at https://github.com/cheerss/CrossFormer
            backbone.load_state_dict(torch.load(save_model_path)['model'], False)
        model = crossformer.cross_former_cls_head_warp(backbone, num_classes)

    elif model_idx[0:13] == 'crossvit_base':  # Transfer learning for crossvit_base  (todo not okey with torch summary)
        import timm
        from pprint import pprint
        model_names = timm.list_models('*crossvit_base*')
        pprint(model_names)
        model = timm.create_model('crossvit_base_240', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:14] == 'efficientnet_b':  # Transfer learning for efficientnet_b3,4
        import timm
        from pprint import pprint
        model_names = timm.list_models('*efficientnet*')
        pprint(model_names)
        model = timm.create_model(model_idx[0:15], pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:14] == 'ResN50_ViT_384':  # ResNet+ViT融合模型384
        import timm
        from pprint import pprint
        model_names = timm.list_models('*vit_base_resnet*')
        pprint(model_names)
        model = timm.create_model('vit_base_resnet50_384', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:15] == 'coat_lite_small' and edge_size == 224:  # Transfer learning for coat_lite_small
        import timm
        from pprint import pprint

        model_names = timm.list_models('*coat*')
        pprint(model_names)
        model = timm.create_model('coat_lite_small', pretrained=pretrained_backbone, num_classes=num_classes)

    elif model_idx[0:17] == 'efficientformer_l' and edge_size == 224:  # Transfer learning for efficientnet_b3,4
        import timm
        from pprint import pprint
        model_names = timm.list_models('*efficientformer*')
        pprint(model_names)
        model = timm.create_model(model_idx[0:18], pretrained=pretrained_backbone, num_classes=num_classes)

    else:
        print('\nThe model', model_idx, 'with the edge size of', edge_size)
        print("is not defined in the script!!", '\n')
        return -1

    try:
        img = torch.randn(1, 3, edge_size, edge_size)
        preds = model(img)  # (1, class_number)
        print('test model output:', preds)
    except:
        print("Problem exist in the model defining process!!")
        return -1
    else:
        print('model is ready now!')
        return model