File size: 13,892 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .conv_layers import DepthwiseSeparableConv, BasicBlock, Bottleneck, MBConv, FusedMBConv, ConvNormAct
from .trans_layers import TransformerBlock

from einops import rearrange
import pdb


class BidirectionAttention(nn.Module):
    def __init__(self, feat_dim, map_dim, out_dim, heads=4, dim_head=64, attn_drop=0., 
    proj_drop=0., map_size=16, proj_type='depthwise'):
        super().__init__()

        self.inner_dim = dim_head * heads
        self.feat_dim = feat_dim
        self.map_dim = map_dim
        self.heads = heads
        self.scale = dim_head ** (-0.5)
        self.dim_head = dim_head
        self.map_size = map_size
        
        assert proj_type in ['linear', 'depthwise']

        if proj_type == 'linear':
            self.feat_qv = nn.Conv2d(feat_dim, self.inner_dim*2, kernel_size=1, bias=False)
            self.feat_out = nn.Conv2d(self.inner_dim, out_dim, kernel_size=1, bias=False)
        
        else:
            self.feat_qv = DepthwiseSeparableConv(feat_dim, self.inner_dim * 2)
            self.feat_out = DepthwiseSeparableConv(self.inner_dim, out_dim)
        
        self.map_qv = nn.Conv2d(map_dim, self.inner_dim*2, kernel_size=1, bias=False)
        self.map_out = nn.Conv2d(self.inner_dim, map_dim, kernel_size=1, bias=False)

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, feat, semantic_map):
        
        B, C, H, W = feat.shape
        
        feat_q, feat_v = self.feat_qv(feat).chunk(2, dim=1) # B, inner_dim, H, W
        map_q, map_v = self.map_qv(semantic_map).chunk(2, dim=1) # B, inner_dim, rs, rs

        feat_q, feat_v = map(lambda t: rearrange(t, 'b (dim_head heads) h w -> b heads (h w) dim_head', dim_head = self.dim_head, heads=self.heads, h=H, w=W), [feat_q, feat_v])
        map_q, map_v = map(lambda t: rearrange(t, 'b (dim_head heads) h w -> b heads (h w) dim_head', dim_head=self.dim_head, heads=self.heads, h=self.map_size, w=self.map_size), [map_q, map_v])

        attn = torch.einsum('bhid,bhjd->bhij', feat_q, map_q)
        attn *= self.scale

        feat_map_attn = F.softmax(attn, dim=-1) # semantic map is very concise that don't need dropout
                                                # add dropout migth cause unstable during training
        map_feat_attn = self.attn_drop(F.softmax(attn, dim=-2))

        feat_out = torch.einsum('bhij,bhjd->bhid', feat_map_attn, map_v)
        feat_out = rearrange(feat_out, 'b heads (h w) dim_head -> b (dim_head heads) h w', h=H, w=W, dim_head=self.dim_head, heads=self.heads)

        map_out = torch.einsum('bhji,bhjd->bhid', map_feat_attn, feat_v)
        map_out = rearrange(map_out, 'b heads (h w) dim_head -> b (dim_head heads) h w', b=B, dim_head=self.dim_head, heads=self.heads, h=self.map_size, w=self.map_size)
        
        feat_out = self.proj_drop(self.feat_out(feat_out))
        map_out = self.proj_drop(self.map_out(map_out))

        return feat_out, map_out


class BidirectionAttentionBlock(nn.Module):
    def __init__(self, feat_dim, map_dim, out_dim, heads, dim_head, norm=nn.BatchNorm2d, 
            act=nn.GELU, expansion=4, attn_drop=0., proj_drop=0., map_size=8, 
            proj_type='depthwise'):
        super().__init__()

        assert norm in [nn.BatchNorm2d, nn.InstanceNorm2d, True, False]
        assert act in [nn.ReLU, nn.ReLU6, nn.GELU, nn.SiLU, True, False]
        assert proj_type in ['linear', 'depthwise']

        self.norm1 = norm(feat_dim) if norm else nn.Identity() # norm layer for feature map
        self.norm2 = norm(map_dim) if norm else nn.Identity()  # norm layer for semantic map
        

        self.attn = BidirectionAttention(feat_dim, map_dim, out_dim, heads=heads, dim_head=dim_head, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type)

        self.shortcut = nn.Sequential()
        if feat_dim != out_dim:
            self.shortcut = ConvNormAct(feat_dim, out_dim, kernel_size=1, padding=0, norm=norm, act=act, preact=True)


        if proj_type == 'linear':
            self.feedforward = FusedMBConv(out_dim, out_dim, expansion=expansion, kernel_size=1, act=act, norm=norm) # 2 conv1x1
        else:
            self.feedforward = MBConv(out_dim, out_dim, expansion=expansion, kernel_size=3, act=act, norm=norm, p=proj_drop) # depthwise conv
   
    def forward(self, x, semantic_map):
        
        feat = self.norm1(x)
        mapp = self.norm2(semantic_map)
        
        out, mapp = self.attn(feat, mapp)

        out += self.shortcut(x)
        out = self.feedforward(out)

        mapp += semantic_map

        return out, mapp

class PatchMerging(nn.Module):
    """
    Modified patch merging layer that works as down-sampling
    """

    def __init__(self, dim, out_dim, norm=nn.BatchNorm2d, proj_type='depthwise', map_proj=True):
        super().__init__()
        self.dim = dim  # 32
        if proj_type == 'linear':
            self.reduction = nn.Conv2d(4*dim, out_dim, kernel_size=1, bias=False)
        else:
            self.reduction = DepthwiseSeparableConv(4*dim, out_dim)  # (32*4, 64)

        self.norm = norm(4*dim)

        if map_proj:
            self.map_projection = nn.Conv2d(dim, out_dim, kernel_size=1, bias=False)
            # (32, 64, kernel_size, bias)

    def forward(self, x, semantic_map=None):
        """
        x: B, C, H, W
        """
        x0 = x[:, :, 0::2, 0::2]
        x1 = x[:, :, 1::2, 0::2]
        x2 = x[:, :, 0::2, 1::2]
        x3 = x[:, :, 1::2, 1::2]

        x = torch.cat([x0, x1, x2, x3], 1) # B, 4C, H, W

        x = self.norm(x)
        x = self.reduction(x)  # depthwise + pointwise  4C -> outdim

        if semantic_map is not None:
            semantic_map = self.map_projection(semantic_map)  # dim -> outdim

        return x, semantic_map

class BasicLayer(nn.Module):
    """
    A basic transformer layer for one stage
    No downsample of upsample operation in this layer, they are wraped in the down_block or up_block of UTNet
    """

    def __init__(self, feat_dim, map_dim, out_dim, num_blocks, heads=4, dim_head=64, expansion=1, attn_drop=0., proj_drop=0., map_size=8, proj_type='depthwise', norm=nn.BatchNorm2d, act=nn.GELU):
        super().__init__()

        dim1 = feat_dim
        dim2 = out_dim

        self.blocks = nn.ModuleList([])
        for i in range(num_blocks):
            self.blocks.append(BidirectionAttentionBlock(dim1, map_dim, dim2, heads, dim_head, expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act))
            dim1 = out_dim

    def forward(self, x, semantic_map):
        for block in self.blocks:
            x, semantic_map = block(x, semantic_map)

        return x, semantic_map

class SemanticMapGeneration(nn.Module):
    def __init__(self, feat_dim, map_dim, map_size):  # (64, 64, 8)
        super().__init__()

        self.map_size = map_size  # 8
        self.map_dim = map_dim  # 64

        self.map_code_num = map_size * map_size  # 8*8=64

        self.base_proj = nn.Conv2d(feat_dim, map_dim, kernel_size=3, padding=1, bias=False)
        # (64, 64, 3, 1, false)
        self.semantic_proj = nn.Conv2d(feat_dim, self.map_code_num, kernel_size=3, padding=1, bias=False)
        # (64, 64, 3, 1 false)



    def forward(self, x):
        B, C, H, W = x.shape  # B, C, H, W
        feat = self.base_proj(x) # B, map_dim, h, w
        weight_map = self.semantic_proj(x) # B, map_code_num, h, w
        
        weight_map = weight_map.view(B, self.map_code_num, -1)
        weight_map = F.softmax(weight_map, dim=2) # B, map_code_num, hw
        feat = feat.view(B, self.map_dim, -1) # B, map_dim, hw

        semantic_map = torch.einsum('bij,bkj->bik', feat, weight_map)

        return semantic_map.view(B, self.map_dim, self.map_size, self.map_size)

     
class SemanticMapFusion(nn.Module):
    def __init__(self, in_dim_list, dim, heads, depth=1, norm=nn.BatchNorm2d):
        super().__init__()


        self.dim = dim

        # project all maps to the same channel num
        self.in_proj = nn.ModuleList([])
        for i in range(len(in_dim_list)):
            self.in_proj.append(nn.Conv2d(in_dim_list[i], dim, kernel_size=1, bias=False))

        self.fusion = TransformerBlock(dim, depth, heads, dim//heads, dim, attn_drop=0., proj_drop=0.)
        
        # project all maps back to their origin channel num
        self.out_proj = nn.ModuleList([])
        for i in range(len(in_dim_list)):
            self.out_proj.append(nn.Conv2d(dim, in_dim_list[i], kernel_size=1, bias=False))

        

    def forward(self, map_list):
        B, _, H, W = map_list[0].shape
        proj_maps = [self.in_proj[i](map_list[i]).view(B, self.dim, -1).permute(0, 2, 1) for i in range(len(map_list))]
        # B, L, C where L=HW
        
        proj_maps = torch.cat(proj_maps, dim=1)

        attned_maps = self.fusion(proj_maps)

        attned_maps = attned_maps.chunk(len(map_list), dim=1)

        maps_out = [self.out_proj[i](attned_maps[i].permute(0, 2, 1).view(B, self.dim, H, W)) for i in range(len(map_list))]

        return maps_out

        



        


            




#######################################################################
# UTNet block that for one stage, which contains conv block and trans block


class inconv(nn.Module):
    def __init__(self, in_ch, out_ch, block=BasicBlock, norm=nn.BatchNorm2d, act=nn.GELU):
        super().__init__()
        self.conv1 = nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False)

        self.conv2 = block(out_ch, out_ch, norm=norm, act=act)

    def forward(self, x):
        if x.shape == 5:
            x = x.squeeze(1)
        out = self.conv1(x)  # (3, 480, 480) -> (32, 480, 480]
        out = self.conv2(out)  # block (32, 32, norm, act) conv norm relu 残差

        return out 




class Down_block(nn.Module):
    def __init__(self, in_ch, out_ch, conv_num, trans_num, conv_block=BasicBlock, 
                heads=4, dim_head=64, expansion=4, attn_drop=0., proj_drop=0., map_size=8, 
                proj_type='depthwise', norm=nn.BatchNorm2d, act=nn.GELU, map_generate=False,
                map_proj=True, map_dim=None):
        # (32, 64, 2, 0, basicblock, batchnorm, gelu, False, False)
        super().__init__()

        map_dim = out_ch if map_dim is None else map_dim  # 64
        self.map_generate = map_generate  # False
        if map_generate:
            self.map_gen = SemanticMapGeneration(out_ch, map_dim, map_size)
        # return semantic_map.view(B, self.map_dim, self.map_size, self.map_size)

        self.patch_merging = PatchMerging(in_ch, out_ch, proj_type=proj_type, norm=norm, map_proj=map_proj)
        # in_ch->out_ch
        block_list = []
        for i in range(conv_num):  # 2
            block_list.append(conv_block(out_ch, out_ch, norm=norm, act=act))
            dim1 = out_ch
        
        self.conv_blocks = nn.Sequential(*block_list)
        
        self.trans_blocks = BasicLayer(out_ch, map_dim, out_ch, num_blocks=trans_num, \
            heads=heads, dim_head=dim_head, norm=norm, act=act, expansion=expansion,\
            attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type)


    def forward(self, x, semantic_map=None):
        
        x, semantic_map = self.patch_merging(x, semantic_map)  # in_ch->out_chan

        out = self.conv_blocks(x)  # out->out
        if self.map_generate:
            semantic_map = self.map_gen(out)  # (B, self.map_dim, self.map_size, self.map_size))

        out, semantic_map = self.trans_blocks(out, semantic_map)

        return out, semantic_map

class Up_block(nn.Module):
    def __init__(self, in_ch, out_ch, conv_num, trans_num, conv_block=BasicBlock,
                heads=4, dim_head=64, expansion=1, attn_drop=0., proj_drop=0., map_size=8, 
                proj_type='linear', norm=nn.BatchNorm2d, act=nn.GELU, map_dim=None, 
                map_shortcut=False):
        super().__init__()
        
        self.reduction = nn.Conv2d(in_ch+out_ch, out_ch, kernel_size=1, padding=0, bias=False)
        self.norm = norm(in_ch+out_ch)

        self.map_shortcut = map_shortcut
        map_dim = out_ch if map_dim is None else map_dim
        if map_shortcut:
            self.map_reduction = nn.Conv2d(in_ch+out_ch, map_dim, kernel_size=1, bias=False)
        else:
            self.map_reduction = nn.Conv2d(in_ch, map_dim, kernel_size=1, bias=False)
        

    
        self.trans_blocks = BasicLayer(out_ch, map_dim, out_ch, num_blocks=trans_num, \
                heads=heads, dim_head=dim_head, norm=norm, act=act, expansion=expansion,\
                attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type)
        
        conv_list = []
        for i in range(conv_num):
            conv_list.append(conv_block(out_ch, out_ch, norm=norm, act=act))

        self.conv_blocks = nn.Sequential(*conv_list)

    def forward(self, x1, x2, map1, map2=None):
        # x1: low-res feature, x2: high-res feature
        # map1: semantic map from previous low-res layer
        # map2: semantic map from encoder shortcut path, might be none if we don't have the map from encoder

         
        x1 = F.interpolate(x1, size=x2.shape[-2:], mode='bilinear', align_corners=True)
        feat = torch.cat([x1, x2], dim=1)
        
        out = self.reduction(self.norm(feat))

        if self.map_shortcut and map2 is not None:
            semantic_map = torch.cat([map1, map2], dim=1)
        else:
            semantic_map = map1
        semantic_map = self.map_reduction(semantic_map)

        out, semantic_map = self.trans_blocks(out, semantic_map)
        out = self.conv_blocks(out)

        return out, semantic_map