File size: 13,016 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
"""
pre-training funcs     Script  ver: Feb 8th 16:00
有修改loss backward

"""
import builtins
import datetime
import os
import time
from collections import defaultdict, deque
from pathlib import Path

import torch
import torch.distributed as dist

try:
    from torch import inf
except:
    from torch._six import inf


# SmoothedValue operator
class SmoothedValue(object):
    """Track a series of values and provide access to smoothed values over a
    window or the global series average.
    """

    def __init__(self, window_size=20, fmt=None):
        if fmt is None:
            fmt = "{median:.4f} ({global_avg:.4f})"
        self.deque = deque(maxlen=window_size)
        self.total = 0.0
        self.count = 0
        self.fmt = fmt

    def update(self, value, n=1):
        self.deque.append(value)
        self.count += n
        self.total += value * n

    def synchronize_between_processes(self):
        """
        Warning: does not synchronize the deque!
        """
        if not is_dist_avail_and_initialized():
            return
        t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
        dist.barrier()
        dist.all_reduce(t)
        t = t.tolist()
        self.count = int(t[0])
        self.total = t[1]

    @property
    def median(self):
        d = torch.tensor(list(self.deque))
        return d.median().item()

    @property
    def avg(self):
        d = torch.tensor(list(self.deque), dtype=torch.float32)
        return d.mean().item()

    @property
    def global_avg(self):
        return self.total / self.count

    @property
    def max(self):
        return max(self.deque)

    @property
    def value(self):
        return self.deque[-1]

    def __str__(self):
        return self.fmt.format(
            median=self.median,
            avg=self.avg,
            global_avg=self.global_avg,
            max=self.max,
            value=self.value)


class MetricLogger(object):
    def __init__(self, delimiter="\t"):
        self.meters = defaultdict(SmoothedValue)  # SmoothedValue operator
        self.delimiter = delimiter

    def update(self, **kwargs):  # 更新内容字典
        for k, v in kwargs.items():
            if v is None:
                continue
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int))
            self.meters[k].update(v)

    def __getattr__(self, attr):  # 报错
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError("'{}' object has no attribute '{}'".format(
            type(self).__name__, attr))

    def __str__(self):  # 转换为str给print
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append(
                "{}: {}".format(name, str(meter))
            )
        return self.delimiter.join(loss_str)

    def synchronize_between_processes(self):  # 多进程同步
        for meter in self.meters.values():
            meter.synchronize_between_processes()

    def add_meter(self, name, meter):  # 新增一个indicator元素
        self.meters[name] = meter

    def log_every(self, iterable, print_freq, header=None):  # warp minibatch
        # 初始化迭代idx
        i = 0
        # 初始化头文件
        if not header:
            header = ''

        # 初始化计时
        start_time = time.time()
        end = time.time()
        iter_time = SmoothedValue(fmt='{avg:.4f}')
        data_time = SmoothedValue(fmt='{avg:.4f}')
        space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
        # 初始化输出
        log_msg = [
            header,
            '[{0' + space_fmt + '}/{1}]',
            'eta: {eta}',
            '{meters}',
            'time: {time}',
            'data: {data}'
        ]
        if torch.cuda.is_available():
            log_msg.append('max mem: {memory:.0f}')

        log_msg = self.delimiter.join(log_msg)  # 缩进

        MB = 1024.0 * 1024.0

        for obj in iterable:

            data_time.update(time.time() - end)
            yield obj  # 生成迭代的下一个对象
            iter_time.update(time.time() - end)

            if i % print_freq == 0 or i == len(iterable) - 1:
                # 估算时间
                eta_seconds = iter_time.global_avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                # 输出
                if torch.cuda.is_available():
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time),
                        memory=torch.cuda.max_memory_allocated() / MB))
                else:
                    print(log_msg.format(
                        i, len(iterable), eta=eta_string,
                        meters=str(self),
                        time=str(iter_time), data=str(data_time)))
            i += 1
            end = time.time()

        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print('{} Total time: {} ({:.4f} s / it)'.format(
            header, total_time_str, total_time / len(iterable)))


def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    builtin_print = builtins.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        force = force or (get_world_size() > 8)
        if is_master or force:
            now = datetime.datetime.now().time()
            builtin_print('[{}] '.format(now), end='')  # print with time stamp
            builtin_print(*args, **kwargs)

    builtins.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):
    """
    配置多服务器环境文件信息,安排args.DDP_distributed

    :param args:
    :return:
    """
    if args.dist_on_itp:
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
        args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]

    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])

    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()

    else:
        print('Not using DDP_distributed mode')
        setup_for_distributed(is_master=True)  # hack
        args.DDP_distributed = False
        return

    args.DDP_distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| DDP_distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)


class NativeScalerWithGradNormCount:
    """
    定义的 loss 优化器

    基于自动混合精度训练设置的loss_scaler,额外增加了梯度裁剪的功能
    """
    state_dict_key = "amp_scaler"

    def __init__(self, GPU_count=1, DDP_distributed=False):
        self._scaler = torch.cuda.amp.GradScaler()
        self.GPU_count = GPU_count
        self.DDP_distributed=DDP_distributed

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):

        # 反传
        if self.DDP_distributed:
            loss = loss.unsqueeze(-1)
            self._scaler.scale(loss).backward(loss, create_graph=create_graph)  # create_graph
        else:
            if self.GPU_count == 1:  # only one GPU
                loss = loss.unsqueeze(-1)  # fixme 加了expand解决梯度标量问题,原本设计为了多卡,多卡有形状,单卡变没有形状的标量了
            # fixme 加了ones_like不知道为啥存在, 可能原本是分布式多个word
            self._scaler.scale(loss).backward(torch.ones_like(loss), create_graph=create_graph)  # create_graph

        if update_grad:
            # 梯度裁剪
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)

            self._scaler.step(optimizer)  # 使用optimizer更新模型

            self._scaler.update()
        else:
            norm = None

        return norm

    def state_dict(self):  # 记录loss_scaler的state_dict,应该就是保存梯度
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):  # 还原某个checkpoint的state_dict
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:

    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]

    # 确定需要梯度的模型参数
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)

    if len(parameters) == 0:
        return torch.tensor(0.)

    # 从对应GPU上进行操作
    device = parameters[0].grad.device

    if norm_type == inf:
        # 面对norm_type == inf爆炸值,保留
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        # 无norm_type == inf爆炸值,做norm
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)

    return total_norm


def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_idx='SAE_'):
    output_dir = Path(args.output_dir)
    epoch_name = str(epoch)

    if loss_scaler is not None:
        checkpoint_paths = [output_dir / (model_idx+'_checkpoint-%s.pth' % epoch_name)]
        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'scaler': loss_scaler.state_dict(),
                'args': args,  # 保存配置参数,但是在加载的时候不加载
            }

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch}
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)


def load_model(args, model_without_ddp, optimizer, loss_scaler):

    # 加载配置checkpoint的路径args.resume,默认没有则不加载
    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.resume, map_location='cpu', check_hash=True)
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')

        model_without_ddp.load_state_dict(checkpoint['model'])

        print("Resume checkpoint %s" % args.resume)

        if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval):
            optimizer.load_state_dict(checkpoint['optimizer'])
            args.start_epoch = checkpoint['epoch'] + 1

            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])

            print("With optim & sched!")


# 计算平均在单卡上的loss
def all_reduce_mean(x):
    world_size = get_world_size()

    if world_size > 1:
        x_reduce = torch.tensor(x).cuda()
        dist.all_reduce(x_reduce)
        x_reduce /= world_size
        return x_reduce.item()

    else:
        return x