File size: 29,755 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
"""
MAE Model Script ver: Oct 23rd 15:00
# References:
Based on MAE code.
https://github.com/facebookresearch/mae
timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
DeiT: https://github.com/facebookresearch/deit
July 16th
Add patchify_decoder to form B,N,D
Add a parameter for MAE to import segmentation network
"""
from functools import partial
import torch
import torch.nn as nn
from timm.models.vision_transformer import PatchEmbed, Block
from Backbone.VPT_structure import VPT_ViT
from SSL_structures.pos_embed import get_2d_sincos_pos_embed
class MaskedAutoencoderViT(VPT_ViT):
"""
Masked Autoencoder with VisionTransformer backbone
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3,
embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4., norm_layer=nn.LayerNorm, norm_pix_loss=False,
prompt_mode=None, Prompt_Token_num=20, basic_state_dict=None, decoder=None, decoder_rep_dim=None):
# model = MaskedAutoencoderViT(
# patch_size=16, embed_dim=768, depth=12, num_heads=12,
# decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
# mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
if prompt_mode is None:
super().__init__()
# MAE encoder specifics (this part just the same as ViT)
# --------------------------------------------------------------------------
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim) # BCHW -> BNC
num_patches = self.patch_embed.num_patches
# learnable cls token is still used but on cls head need
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# set and freeze encoder_pos_embed, use the fixed sin-cos embedding for tokens + mask_token
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False)
# Encoder blocks
self.blocks = nn.ModuleList([ # qk_scale=None fixme related to timm version
Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.prompt_mode = prompt_mode
# --------------------------------------------------------------------------
else:
super().__init__(img_size=img_size, patch_size=patch_size, in_chans=in_chans,
embed_dim=embed_dim, depth=depth, num_heads=num_heads, mlp_ratio=mlp_ratio,
norm_layer=norm_layer, Prompt_Token_num=Prompt_Token_num, VPT_type=prompt_mode,
basic_state_dict=None) # Firstly, set then Encoder state_dict to none here.
num_patches = self.patch_embed.num_patches # set patch_embed of VPT
# set and freeze encoder_pos_embed, use the fixed sin-cos embedding for tokens + mask_token
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False)
self.prompt_mode = prompt_mode
# Freeze Encoder parameters except of the Prompt Tokens
self.Freeze()
# MAE decoder specifics
# --------------------------------------------------------------------------
# if the feature dimension of encoder and decoder are different, use decoder_embed to align them
if embed_dim != decoder_embed_dim:
self.decoder_embed = nn.Linear(embed_dim, decoder_embed_dim, bias=True)
else:
self.decoder_embed = nn.Identity()
if decoder is not None:
self.decoder = decoder
# set mask_token (learnable mask token for reconstruction)
self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
# Decoder use a FC to reconstruct image, unlike the Encoder which use a CNN to split patch
self.decoder_pred = nn.Linear(decoder_rep_dim, patch_size ** 2 * in_chans, bias=True) # decoder to patch
else:
self.decoder = None # 未传入decoder则与encoder流程一致,但是更改了通道数量,构建block(原版MAE)
# set mask_token (learnable mask token for reconstruction)
self.mask_token = nn.Parameter(torch.zeros(1, 1, decoder_embed_dim))
# set and freeze decoder_pos_embed, use the fixed sin-cos embedding for tokens + mask_token
self.decoder_pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, decoder_embed_dim),
requires_grad=False)
self.decoder_blocks = nn.ModuleList([Block(decoder_embed_dim, decoder_num_heads, mlp_ratio,
qkv_bias=True, norm_layer=norm_layer)
for i in range(decoder_depth)])
# qk_scale=None fixme related to timm version
self.decoder_norm = norm_layer(decoder_embed_dim)
# Decoder use a FC to reconstruct image, unlike the Encoder which use a CNN to split patch
self.decoder_pred = nn.Linear(decoder_embed_dim, patch_size ** 2 * in_chans, bias=True) # decoder to patch
# --------------------------------------------------------------------------
# wether or not to use norm_pix_loss
self.norm_pix_loss = norm_pix_loss
# parameter initialization
self.initialize_weights()
# load basic state_dict of backbone for Transfer-learning-based tuning
if basic_state_dict is not None:
self.load_state_dict(basic_state_dict, False)
def initialize_weights(self):
# initialization
# initialize a 2d positional encoding of (embed_dim, grid) by sin-cos embedding
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1],
int(self.patch_embed.num_patches ** .5),
cls_token=True)
# return: pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
if self.decoder is None:
# initialize a 2d positional encoding of (embed_dim, grid) by sin-cos embedding
decoder_pos_embed = get_2d_sincos_pos_embed(self.decoder_pos_embed.shape[-1],
int(self.patch_embed.num_patches ** .5),
cls_token=True)
self.decoder_pos_embed.data.copy_(torch.from_numpy(decoder_pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # xavier_uniform,让输入输出的方差相同,包括前后向传播
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.mask_token, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
# initialize nn.Linear and nn.LayerNorm
if isinstance(m, nn.Linear):
# we use xavier_uniform following official JAX ViT:
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def patchify(self, imgs):
"""
Encode image to patch tokens
input:
imgs: (B, 3, H, W)
output:
x: (B, num_patches, patch_size**2 *3) AKA [B, num_patches, flatten_dim]
"""
# patch_size
p = self.patch_embed.patch_size[0]
# assert H == W and image shape is dividedable by patch
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % p == 0
# patch num in rol or column
h = w = imgs.shape[2] // p
# use reshape to split patch [B, C, H, W] -> [B, C, h_p, p, w_p, p]
x = imgs.reshape(shape=(imgs.shape[0], 3, h, p, w, p))
# ReArrange dimensions [B, C, h_p, p, w_p, p] -> [B, h_p, w_p, p, p, C]
x = torch.einsum('nchpwq->nhwpqc', x)
# ReArrange dimensions [B, h_p, w_p, p, p, C] -> [B, num_patches, flatten_dim]
x = x.reshape(shape=(imgs.shape[0], h * w, p ** 2 * 3))
return x
def patchify_decoder(self, imgs, patch_size=None): # TODO 这里目的很大,需要实现预训练!
"""
Break image to patch tokens
fixme,注意,这里patch_size应该是按照decoder的网络设置来作为default
input:
imgs: (B, CLS, H, W)
output:
x: (B, num_patches, -1) AKA [B, num_patches, -1]
"""
# patch_size
patch_size = self.patch_embed.patch_size[0] if patch_size is None else patch_size
# assert H == W and image shape is divided-able by patch
assert imgs.shape[2] == imgs.shape[3] and imgs.shape[2] % patch_size == 0
# patch num in rol or column
h = w = imgs.shape[2] // patch_size
# use reshape to split patch [B, C, H, W] -> [B, C, h_p, patch_size, w_p, patch_size]
x = imgs.reshape(shape=(imgs.shape[0], -1, h, patch_size, w, patch_size))
# ReArrange dimensions [B, C, h_p, patch_size, w_p, patch_size] -> [B, h_p, w_p, patch_size, patch_size, C]
x = torch.einsum('nchpwq->nhwpqc', x)
# ReArrange dimensions [B, h_p, w_p, patch_size, patch_size, C] -> [B, num_patches, flatten_dim]
x = x.reshape(shape=(imgs.shape[0], h * w, -1))
return x
def unpatchify(self, x, patch_size=None):
"""
Decoding encoded patch tokens
input:
x: (B, num_patches, patch_size**2 *3) AKA [B, num_patches, flatten_dim]
output:
imgs: (B, 3, H, W)
"""
# patch_size
p = self.patch_embed.patch_size[0] if patch_size is None else patch_size
# squre root of num_patches(without CLS token required)
h = w = int(x.shape[1] ** .5)
# assert num_patches is without CLS token
assert h * w == x.shape[1]
# ReArrange dimensions [B, num_patches, flatten_dim] -> [B, h_p, w_p, p, p, C]
x = x.reshape(shape=(x.shape[0], h, w, p, p, 3))
# ReArrange dimensions [B, h_p, w_p, p, p, C] -> [B, C, h_p, p, w_p, p]
x = torch.einsum('nhwpqc->nchpwq', x)
# use reshape to compose patch [B, C, h_p, p, w_p, p] -> [B, C, H, W]
imgs = x.reshape(shape=(x.shape[0], 3, h * p, h * p))
return imgs
def random_masking(self, x, mask_ratio):
"""
Perform per-sample random masking by per-sample shuffling.
Per-sample shuffling is done by argsort random noise.
注意torch.argsort返回的是:
在每个指定dim,按原tensor每个位置数值大小升序排列后,的原本位置的idx组成的矩阵
input:
x: [B, num_patches, D], sequence of Tokens
output: x_remained, mask, ids_restore
x_remained: [B, num_patches * (1-mask_ratio), D], sequence of Tokens
mask: [B, num_patches], binary mask
ids_restore: [B, num_patches], idx of restoring all position
"""
B, num_patches, D = x.shape # batch, length, dim
# 计算需要保留的位置的个数
len_keep = int(num_patches * (1 - mask_ratio))
# 做一个随机序列[B,num_patches],用于做位置标号
noise = torch.rand(B, num_patches, device=x.device) # noise in [0, 1]
# 在Batch里面每个序列上获得noise tensor经过升序排列后原本位置的idx矩阵 在batch内进行升序排列
ids_shuffle = torch.argsort(noise, dim=1) # ascend: small is keep, large is remove
# 再对idx矩阵继续升序排列可获得:原始noise tensor的每个位置的排序顺位
ids_restore = torch.argsort(ids_shuffle, dim=1)
# keep the first subset
ids_keep = ids_shuffle[:, :len_keep]
# 设置需要的patch的索引
# ids_keep.unsqueeze(-1).repeat(1, 1, D):
# [B,num_patches] -> [B,keep_patches] -> [B,keep_patches,1] 每个位置数字为idx of ori patch -> [B,keep_patches,D]
# torch.gather 按照索引取值构建新tensor: x_remained [B,keep_patches,D] 表示被标记需要保留的位置, 原文是x_masked
x_remained = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))
# generate the binary mask: 0 is keep, 1 is remove
mask = torch.ones([B, num_patches], device=x.device)
mask[:, :len_keep] = 0 # 设置mask矩阵,前len_keep个为0,后面为1
# 按照noise tensor每个位置的大小顺序,来设置mask符号为0的位置,获得mask矩阵
mask = torch.gather(mask, dim=1, index=ids_restore)
return x_remained, mask, ids_restore # x_remained原文是x_masked
def forward_encoder(self, imgs, mask_ratio):
"""
:param imgs: [B, C, H, W], sequence of imgs
:param mask_ratio: mask_ratio
:return: Encoder output: encoded tokens, mask position, restore idxs
x: [B, 1 + num_patches * (1-mask_ratio), D], sequence of Tokens (including the cls token)
mask: [B, num_patches], binary mask
ids_restore: [B, num_patches], idx of restoring all position
"""
if self.prompt_mode is None: # ViT
# embed patches
x = self.patch_embed(imgs) # BCHW -> BNC
# add pos embed w/o cls token
x = x + self.pos_embed[:, 1:, :] # add pos embed before concatenate the cls token
# masking: length -> length * (1-mask_ratio)
# x_remained: [B, num_patches * (1-mask_ratio), D], sequence of Tokens
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1) # batch fix 调整batch
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer Encoders
for blk in self.blocks:
x = blk(x)
else: # VPT
x = self.patch_embed(imgs)
# add pos embed before concatenate the cls token
x = x + self.pos_embed[:, 1:, :]
# masking: length -> length * (1-mask_ratio)
# x_remained: [B, num_patches * (1-mask_ratio), D], sequence of Tokens
x, mask, ids_restore = self.random_masking(x, mask_ratio)
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1) # batch fix 调整batch
x = torch.cat((cls_tokens, x), dim=1)
if self.VPT_type == "Deep":
Prompt_Token_num = self.Prompt_Tokens.shape[1]
for i in range(len(self.blocks)):
# concatenate Prompt_Tokens
Prompt_Tokens = self.Prompt_Tokens[i].unsqueeze(0)
# firstly concatenate
x = torch.cat((x, Prompt_Tokens.expand(x.shape[0], -1, -1)), dim=1)
num_tokens = x.shape[1]
# lastly remove, a good trick
x = self.blocks[i](x)[:, :num_tokens - Prompt_Token_num]
else: # self.VPT_type == "Shallow"
Prompt_Token_num = self.Prompt_Tokens.shape[1]
# concatenate Prompt_Tokens
Prompt_Tokens = self.Prompt_Tokens.expand(x.shape[0], -1, -1)
x = torch.cat((x, Prompt_Tokens), dim=1)
num_tokens = x.shape[1]
# A whole sequential process
x = self.blocks(x)[:, :num_tokens - Prompt_Token_num]
# last norm of Transformer
x = self.norm(x)
# Encoder output: encoded tokens, mask position, restore idxs
return x, mask, ids_restore
def forward_decoder(self, x, ids_restore):
"""
:param x: [B, 1 + num_patches * (1-mask_ratio), D], sequence of Tokens (including the cls token)
:param ids_restore: restore idxs for torch.gather(mask, dim=1, index=ids_restore)
:return: Decoder output: reconstracted tokens
x: [B, num_patches * (1-mask_ratio), D], sequence of Tokens
"""
if self.decoder is None:
# embed tokens: [B, num_encoded_tokens, embed_dim] -> [B, num_encoded_tokens, D_Decoder]
x = self.decoder_embed(x) # 更改适合的通道数
# append mask tokens to sequence as place holder: [B, num_patches + 1 - num_encoded_tokens, D_Decoder]
# number of mask token need is the requirement to fill the num_patches
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
# 这里ids_restore.shape[1] + 1 - x.shape[1] 其实意思是ids_restore.shape[1] - (x.shape[1]-1), 因为不要CLS token
# -> [B, num_patches, D_Decoder]
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # stripe the cls token in Decoder for restore position
# unshuffle to restore the position of tokens
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))
# torch.gather 按照索引取值构建新tensor: x_ [B,num_patches,D_Decoder] 表示位置还原之后的图,此时数值还不对
# append back the cls token at the first -> [B,1+num_patches,D_Decoder]
x = torch.cat([x[:, :1, :], x_], dim=1)
# add pos embed
x = x + self.decoder_pos_embed
# apply Transformer blocks
for blk in self.decoder_blocks:
x = blk(x)
x = self.decoder_norm(x)
# Reconstruction projection [B, num_patches, D_Decoder] -> [B, num_patches, p*p*3]
x = self.decoder_pred(x)
# remove cls token
x = x[:, 1:, :]
else:
# append mask tokens to sequence as place holder: [B, num_patches + 1 - num_encoded_tokens, D]
# number of mask token need is the requirement to fill the num_patches
mask_tokens = self.mask_token.repeat(x.shape[0], ids_restore.shape[1] + 1 - x.shape[1], 1)
# 这里ids_restore.shape[1] + 1 - x.shape[1] 其实意思是ids_restore.shape[1] - (x.shape[1]-1), 因为不要CLS token
# -> [B, num_patches, D]
x_ = torch.cat([x[:, 1:, :], mask_tokens], dim=1) # stripe the cls token in Decoder for restore position
# unshuffle to restore the position of tokens
x_ = torch.gather(x_, dim=1, index=ids_restore.unsqueeze(-1).repeat(1, 1, x.shape[2]))
# torch.gather 按照索引取值构建新tensor: x_ [B,num_patches,D] 表示位置还原之后的图,此时数值还不对
# embed tokens: [B, num_encoded_tokens, D_Encoder] -> [B, num_encoded_tokens, D_Decoder]
x_ = self.decoder_embed(x_)
# unpatchify to make image form [B, N, Enc] to [B,H,W,C]
x = self.unpatchify(x_) # restore image by Encoder
# apply decoder module to segment the output of encoder
x = self.decoder(x) # [B, CLS, H, W]
# the output of segmentation is transformed to [B, N, Dec]
x = self.patchify_decoder(x) # TODO 做一个有意义的设计
# Convert the number of channels to match image for loss function
x = self.decoder_pred(x) # [B, N, Dec] -> [B, N, p*p*3]
return x
def forward_loss(self, imgs, pred, mask): # 通过把loss放到model里面,把model变成了一个训练框架
"""
MSE loss for all patches towards the ori image
Input:
imgs: [B, 3, H, W], Encoder input image
pred: [B, num_patches, p*p*3], Decoder reconstructed image
mask: [B, num_patches], 0 is keep, 1 is remove,
"""
target = self.patchify(imgs)
if self.norm_pix_loss: # 把target image patches 标准化
mean = target.mean(dim=-1, keepdim=True)
var = target.var(dim=-1, keepdim=True)
target = (target - mean) / (var + 1.e-6) ** .5
# MSE loss
loss = (pred - target) ** 2
loss = loss.mean(dim=-1) # [N, L], mean loss per patch
# binary mask, 1 for removed patches
loss = (loss * mask).sum() / mask.sum() # mean loss on removed patches
return loss
def forward(self, imgs, mask_ratio=0.75):
# Encoder to obtain latent tokens
latent, mask, ids_restore = self.forward_encoder(imgs, mask_ratio)
# Decoder to obtain Reconstructed image patches
pred = self.forward_decoder(latent, ids_restore) # [N, L, p*p*3]
# MSE loss for all patches towards the ori image
loss = self.forward_loss(imgs, pred, mask)
# print(loss) # todo 这里原文是为了关注loss爆炸, 可能有坑
return loss, pred, mask
def mae_vit_base_patch16_dec512d8b(dec_idx=None, **kwargs):
print("Decoder:", dec_idx)
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_large_patch16_dec512d8b(dec_idx=None, **kwargs):
print("Decoder:", dec_idx)
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_huge_patch14_dec512d8b(dec_idx=None, **kwargs):
print("Decoder:", dec_idx)
model = MaskedAutoencoderViT(
patch_size=14, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs)
return model
def mae_vit_base_patch16_decoder(dec_idx=None, num_classes=3, img_size=224, **kwargs):
# num_classes做的是one-hot seg但是不是做还原,我们得设计一下如何去做这个还原才能实现预训练
if dec_idx == 'swin_unet':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
from SSL_structures.Swin_Unet_main.networks.vision_transformer import SwinUnet as ViT_seg
decoder = ViT_seg(num_classes=num_classes, **kwargs)
elif dec_idx == 'transunet':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
transunet_name = 'R50-ViT-B_16'
transunet_patches_size = 16
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import CONFIGS as CONFIGS_Transunet_seg
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import VisionTransformer as Transunet_seg
config_vit = CONFIGS_Transunet_seg[transunet_name]
config_vit.n_classes = num_classes
config_vit.n_skip = 3
if transunet_name.find('R50') != -1:
config_vit.patches.grid = (
int(img_size / transunet_patches_size), int(img_size / transunet_patches_size))
decoder = Transunet_seg(config_vit, num_classes=config_vit.n_classes)
elif dec_idx == 'UTNetV2':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
from SSL_structures.UtnetV2.utnetv2 import UTNetV2 as UTNetV2_seg
decoder = UTNetV2_seg(in_chan=3, num_classes=num_classes)
else:
print('no effective decoder!')
return -1
print('dec_idx: ', dec_idx)
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=768, depth=12, num_heads=12,
decoder_embed_dim=decoder_embed_dim, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), decoder_rep_dim=decoder_rep_dim, decoder=decoder,
**kwargs)
return model
def mae_vit_large_patch16_decoder(dec_idx=None, num_classes=3, img_size=224, **kwargs):
# num_classes做的是one-hot seg但是不是做还原,我们得设计一下如何去做这个还原才能实现预训练
if dec_idx == 'swin_unet':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
from SSL_structures.Swin_Unet_main.networks.vision_transformer import SwinUnet as ViT_seg
decoder = ViT_seg(num_classes=num_classes, **kwargs)
elif dec_idx == 'transunet':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
transunet_name = 'R50-ViT-B_16'
transunet_patches_size = 16
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import CONFIGS as CONFIGS_Transunet_seg
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import VisionTransformer as Transunet_seg
config_vit = CONFIGS_Transunet_seg[transunet_name]
config_vit.n_classes = num_classes
config_vit.n_skip = 3
if transunet_name.find('R50') != -1:
config_vit.patches.grid = (
int(img_size / transunet_patches_size), int(img_size / transunet_patches_size))
decoder = Transunet_seg(config_vit, num_classes=config_vit.n_classes)
elif dec_idx == 'UTNetV2':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
from SSL_structures.UtnetV2.utnetv2 import UTNetV2 as UTNetV2_seg
decoder = UTNetV2_seg(in_chan=3, num_classes=num_classes)
else:
print('no effective decoder!')
return -1
print('dec_idx: ', dec_idx)
model = MaskedAutoencoderViT(
patch_size=16, embed_dim=1024, depth=24, num_heads=16,
decoder_embed_dim=decoder_embed_dim, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), decoder_rep_dim=decoder_rep_dim, decoder=decoder,
**kwargs)
return model
def mae_vit_huge_patch14_decoder(dec_idx=None, num_classes=3, img_size=224, **kwargs):
# num_classes做的是one-hot seg但是不是做还原,我们得设计一下如何去做这个还原才能实现预训练
if dec_idx == 'swin_unet':
decoder_embed_dim = 588 # 1280 14*14*3
decoder_rep_dim = 14 * 14 * 3
from SSL_structures.Swin_Unet_main.networks.vision_transformer import SwinUnet as ViT_seg
decoder = ViT_seg(num_classes=num_classes, **kwargs)
elif dec_idx == 'transunet':
decoder_embed_dim = 768
decoder_rep_dim = 16 * 16 * 3
transunet_name = 'R50-ViT-B_16'
transunet_patches_size = 16
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import CONFIGS as CONFIGS_Transunet_seg
from SSL_structures.TransUNet_main.networks.vit_seg_modeling import VisionTransformer as Transunet_seg
config_vit = CONFIGS_Transunet_seg[transunet_name]
config_vit.n_classes = num_classes
config_vit.n_skip = 3
if transunet_name.find('R50') != -1:
config_vit.patches.grid = (
int(img_size / transunet_patches_size), int(img_size / transunet_patches_size))
decoder = Transunet_seg(config_vit, num_classes=config_vit.n_classes)
elif dec_idx == 'UTNetV2':
decoder_embed_dim = 768
decoder_rep_dim = 14 * 14 * 3
from SSL_structures.UtnetV2.utnetv2 import UTNetV2 as UTNetV2_seg
decoder = UTNetV2_seg(in_chan=3, num_classes=num_classes)
else:
print('no effective decoder!')
return -1
print('dec_idx: ', dec_idx)
model = MaskedAutoencoderViT(
patch_size=14, embed_dim=1280, depth=32, num_heads=16,
decoder_embed_dim=decoder_embed_dim, decoder_depth=8, decoder_num_heads=16,
mlp_ratio=4, norm_layer=partial(nn.LayerNorm, eps=1e-6), decoder_rep_dim=decoder_rep_dim, decoder=decoder,
**kwargs)
return model
# set recommended archs
mae_vit_base_patch16 = mae_vit_base_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_large_patch16 = mae_vit_large_patch16_dec512d8b # decoder: 512 dim, 8 blocks
mae_vit_huge_patch14 = mae_vit_huge_patch14_dec512d8b # decoder: 512 dim, 8 blocks
# Equiped with decoders
mae_vit_base_patch16_decoder = mae_vit_base_patch16_decoder # decoder: 768 dim, HYF
mae_vit_large_patch16_decoder = mae_vit_large_patch16_decoder # decoder: 768 dim, HYF
mae_vit_huge_patch14_decoder = mae_vit_huge_patch14_decoder # decoder: 768 dim, HYF
if __name__ == '__main__':
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
img_size = 224
num_classes = 3
x = torch.rand(8, 3, img_size, img_size, device=device)
# model = mae_vit_base_patch16(img_size=224, decoder=None) # decoder_embed_dim=512
model = mae_vit_base_patch16_decoder(prompt_mode='Deep', Prompt_Token_num=20, basic_state_dict=None,
dec_idx='UTNetV2', img_size=img_size)
model.to(device)
loss, pred, mask_patch_indicators = model(x)
print(loss, '\n')
print(loss.shape, '\n')
print(pred.shape, '\n')
print(mask_patch_indicators.shape, '\n')
|