File size: 18,801 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
"""
Testing Script ver: Oct 23rd 17:30
"""
from __future__ import print_function, division
import argparse
import json
import time
import torchvision
from tensorboardX import SummaryWriter
from Backbone.getmodel import get_model
from Backbone.GetPromptModel import build_promptmodel
from utils.data_augmentation import *
from utils.visual_usage import *
def test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx, test_model_idx, edge_size,
check_minibatch=100, device=None, draw_path='../imaging_results', enable_attention_check=None,
enable_visualize_check=True, writer=None):
"""
Testing iteration
:param model: model object
:param test_dataloader: the test_dataloader obj
:param criterion: loss func obj
:param class_names: The name of classes for priting
:param test_dataset_size: size of datasets
:param model_idx: model idx for the getting trained model
:param edge_size: image size for the input image
:param check_minibatch: number of skip over minibatch in calculating the criteria's results etc.
:param device: cpu/gpu object
:param draw_path: path folder for output pic
:param enable_attention_check: use attention_check to show the pics of models' attention areas
:param enable_visualize_check: use visualize_check to show the pics
:param writer: attach the records to the tensorboard backend
"""
# scheduler is an LR scheduler object from torch.optim.lr_scheduler.
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
since = time.time()
print('Epoch: Test')
print('-' * 10)
phase = 'test'
index = 0
model_time = time.time()
# initiate the empty json dict
json_log = {'test': {}}
# initiate the empty log dict
log_dict = {}
for cls_idx in range(len(class_names)):
log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}
model.eval() # Set model to evaluate mode
# criterias, initially empty
running_loss = 0.0
log_running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in test_dataloader: # use different dataloder in different phase
inputs = inputs.to(device)
# print('inputs[0]',type(inputs[0]))
labels = labels.to(device)
# zero the parameter gradients only need in training
# optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# log criterias: update
log_running_loss += loss.item()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
# Compute recision and recall for each class.
for cls_idx in range(len(class_names)):
# NOTICE remember to put tensor back to cpu
tp = np.dot((labels.cpu().data == cls_idx).numpy().astype(int),
(preds == cls_idx).cpu().numpy().astype(int))
tn = np.dot((labels.cpu().data != cls_idx).numpy().astype(int),
(preds != cls_idx).cpu().numpy().astype(int))
fp = np.sum((preds == cls_idx).cpu().numpy()) - tp
fn = np.sum((labels.cpu().data == cls_idx).numpy()) - tp
# log_dict[cls_idx] = {'tp': 0, 'tn': 0, 'fp': 0, 'fn': 0}
log_dict[class_names[cls_idx]]['tp'] += tp
log_dict[class_names[cls_idx]]['tn'] += tn
log_dict[class_names[cls_idx]]['fp'] += fp
log_dict[class_names[cls_idx]]['fn'] += fn
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' minibatch loss',
float(loss.item()),
index)
writer.add_scalar(phase + ' minibatch ACC',
float(torch.sum(preds == labels.data) / inputs.size(0)),
index)
# at the checking time now
if index % check_minibatch == check_minibatch - 1:
model_time = time.time() - model_time
check_index = index // check_minibatch + 1
epoch_idx = 'test'
print('Epoch:', epoch_idx, ' ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
check_index, ' time used:', model_time)
print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)
# how many image u want to check, should SMALLER THAN the batchsize
if enable_attention_check:
try:
check_SAA(inputs, labels, model, model_idx, edge_size, class_names, num_images=1,
pic_name='GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
if enable_visualize_check:
visualize_check(inputs, labels, model, class_names, num_images=-1,
pic_name='Visual_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
model_time = time.time()
log_running_loss = 0.0
index += 1
# json log: update
json_log['test'][phase] = log_dict
# log criterias: print
epoch_loss = running_loss / test_dataset_size
epoch_acc = running_corrects.double() / test_dataset_size * 100
print('\nEpoch: {} \nLoss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
for cls_idx in range(len(class_names)):
# calculating the confusion matrix
tp = log_dict[class_names[cls_idx]]['tp']
tn = log_dict[class_names[cls_idx]]['tn']
fp = log_dict[class_names[cls_idx]]['fp']
fn = log_dict[class_names[cls_idx]]['fn']
tp_plus_fp = tp + fp
tp_plus_fn = tp + fn
fp_plus_tn = fp + tn
fn_plus_tn = fn + tn
# precision
if tp_plus_fp == 0:
precision = 0
else:
precision = float(tp) / tp_plus_fp * 100
# recall
if tp_plus_fn == 0:
recall = 0
else:
recall = float(tp) / tp_plus_fn * 100
# TPR (sensitivity)
TPR = recall
# TNR (specificity)
# FPR
if fp_plus_tn == 0:
TNR = 0
FPR = 0
else:
TNR = tn / fp_plus_tn * 100
FPR = fp / fp_plus_tn * 100
# NPV
if fn_plus_tn == 0:
NPV = 0
else:
NPV = tn / fn_plus_tn * 100
print('{} precision: {:.4f} recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
print('{} sensitivity: {:.4f} specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
print('{} FPR: {:.4f} NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
print('{} TP: {}'.format(class_names[cls_idx], tp))
print('{} TN: {}'.format(class_names[cls_idx], tn))
print('{} FP: {}'.format(class_names[cls_idx], fp))
print('{} FN: {}'.format(class_names[cls_idx], fn))
print('\n')
time_elapsed = time.time() - since
print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
# attach the records to the tensorboard backend
if writer is not None:
writer.close()
# save json_log indent=2 for better view
json.dump(json_log, open(os.path.join(draw_path, test_model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)
return model
def main(args):
if args.paint:
# use Agg kernal, not painting in the front-desk
import matplotlib
matplotlib.use('Agg')
gpu_idx = args.gpu_idx # GPU idx start with0, -1 to use multiple GPU
enable_tensorboard = args.enable_tensorboard # False
enable_attention_check = args.enable_attention_check # False
enable_visualize_check = args.enable_visualize_check # False
data_augmentation_mode = args.data_augmentation_mode # 0
# Prompt
PromptTuning = args.PromptTuning # None "Deep" / "Shallow"
Prompt_Token_num = args.Prompt_Token_num # 20
PromptUnFreeze = args.PromptUnFreeze # False
model_idx = args.model_idx # the model we are going to use. by the format of Model_size_other_info
# structural parameter
drop_rate = args.drop_rate
attn_drop_rate = args.attn_drop_rate
drop_path_rate = args.drop_path_rate
use_cls_token = False if args.cls_token_off else True
use_pos_embedding = False if args.pos_embedding_off else True
use_att_module = None if args.att_module == 'None' else args.att_module
# PATH info
draw_root = args.draw_root
model_path = args.model_path
dataroot = args.dataroot
model_path_by_hand = args.model_path_by_hand # None
# Pre_Trained model basic for prompt turned model's test
Pre_Trained_model_path = args.Pre_Trained_model_path # None
# CLS_ is for the CLS trained models, MIL_Stripe will be MIL trained and use Stripe to test
test_model_idx = 'CLS_' + model_idx + '_test'
# NOTICE: MIL model should only be tested in stripe model in this test.py
draw_path = os.path.join(draw_root, test_model_idx)
# load Finetuning trained model by its task-based saving name,
# also support MIL-SI model but the MIL_Stripe is required
if model_path_by_hand is None:
# CLS_ is for the CLS training, MIL will be MIL training
save_model_path = os.path.join(model_path, 'CLS_' + model_idx + '.pth')
else:
save_model_path = model_path_by_hand
if not os.path.exists(draw_path):
os.makedirs(draw_path)
# choose the test dataset
test_dataroot = os.path.join(dataroot, 'test')
# dataset info
num_classes = args.num_classes # default 0 for auto-fit
edge_size = args.edge_size
# validating setting
batch_size = args.batch_size
criterion = nn.CrossEntropyLoss()
# Data Augmentation is not used in validating or testing
data_transforms = data_augmentation(data_augmentation_mode, edge_size=edge_size)
# test setting is the same as the validate dataset's setting
test_datasets = torchvision.datasets.ImageFolder(test_dataroot, data_transforms['val'])
test_dataset_size = len(test_datasets)
# skip minibatch none to draw 20 figs
check_minibatch = args.check_minibatch if args.check_minibatch is not None else test_dataset_size // (
20 * batch_size)
test_dataloader = torch.utils.data.DataLoader(test_datasets, batch_size=batch_size, shuffle=False, num_workers=1)
class_names = [d.name for d in os.scandir(test_dataroot) if d.is_dir()]
class_names.sort()
if num_classes == 0:
print("class_names:", class_names)
num_classes = len(class_names)
else:
if len(class_names) == num_classes:
print("class_names:", class_names)
else:
print('classfication number of the model mismatch the dataset requirement of:', len(class_names))
return -1
# get model
pretrained_backbone = False # model is trained already, pretrained backbone weight is useless here
if PromptTuning is None:
model = get_model(num_classes, edge_size, model_idx, drop_rate, attn_drop_rate, drop_path_rate,
pretrained_backbone, use_cls_token, use_pos_embedding, use_att_module)
else:
if Pre_Trained_model_path is not None and os.path.exists(Pre_Trained_model_path):
base_state_dict = torch.load(Pre_Trained_model_path)
else:
base_state_dict = 'timm'
print('base_state_dict of timm')
print('Test the PromptTuning of ', model_idx)
print('Prompt VPT type:', PromptTuning)
model = build_promptmodel(num_classes, edge_size, model_idx, Prompt_Token_num=Prompt_Token_num,
VPT_type=PromptTuning, base_state_dict=base_state_dict)
try:
if PromptTuning is None:
model.load_state_dict(torch.load(save_model_path))
else:
if PromptUnFreeze:
model.load_state_dict(torch.load(save_model_path))
else:
model.load_prompt(torch.load(save_model_path))
print("model loaded")
print("model :", model_idx)
except:
try:
model = nn.DataParallel(model)
if PromptTuning is None:
model.load_state_dict(torch.load(save_model_path))
else:
if PromptUnFreeze:
model.load_state_dict(torch.load(save_model_path))
else:
model.load_prompt(torch.load(save_model_path))
print("DataParallel model loaded")
except:
print("model loading erro!!")
return -1
if gpu_idx == -1:
if torch.cuda.device_count() > 1:
print("Use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
else:
print('we dont have more GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
except:
print("GPU distributing ERRO occur use CPU instead")
else:
# Decide which device we want to run on
try:
# setting k for: only card idx k is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
except:
print('we dont have that GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
except:
print("GPU distributing ERRO occur use CPU instead")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # single card for test
model.to(device)
# start tensorboard backend
if enable_tensorboard:
writer = SummaryWriter(draw_path)
else:
writer = None
# if you want to run tensorboard locally
# nohup tensorboard --logdir=/home/experiments/runs --host=0.0.0.0 --port=7777 &
print("*********************************{}*************************************".format('setting'))
print(args)
test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx=model_idx,
test_model_idx=test_model_idx, edge_size=edge_size, check_minibatch=check_minibatch,
device=device, draw_path=draw_path, enable_attention_check=enable_attention_check,
enable_visualize_check=enable_visualize_check, writer=writer)
def get_args_parser():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Model Name or index
parser.add_argument('--model_idx', default='ViT_base', type=str, help='Model Name or index')
# drop_rate, attn_drop_rate, drop_path_rate
parser.add_argument('--drop_rate', default=0.0, type=float, help='dropout rate , default 0.0')
parser.add_argument('--attn_drop_rate', default=0.0, type=float, help='dropout rate Aftter Attention, default 0.0')
parser.add_argument('--drop_path_rate', default=0.0, type=float, help='drop path for stochastic depth, default 0.0')
# Abalation Studies for MSHT
parser.add_argument('--cls_token_off', action='store_true', help='use cls_token in model structure')
parser.add_argument('--pos_embedding_off', action='store_true', help='use pos_embedding in model structure')
# 'SimAM', 'CBAM', 'SE' 'None'
parser.add_argument('--att_module', default='SimAM', type=str, help='use which att_module in model structure')
# Enviroment parameters
parser.add_argument('--gpu_idx', default=0, type=int,
help='use a single GPU with its index, -1 to use multiple GPU')
# Path parameters
parser.add_argument('--dataroot', default=r'/data/k5_dataset',
help='path to dataset')
parser.add_argument('--model_path', default=r'/home/saved_models',
help='root path to save model state-dict, model will be find by name')
parser.add_argument('--draw_root', default=r'/home/runs',
help='path to draw and save tensorboard output')
# model_path_by_hand
parser.add_argument('--model_path_by_hand', default=None, type=str, help='specified path to a model state-dict')
# Help tool parameters
parser.add_argument('--paint', action='store_false', help='paint in front desk') # matplotlib.use('Agg')
# check tool parameters
parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')
parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')
parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')
# PromptTuning
parser.add_argument('--PromptTuning', default=None, type=str,
help='use Prompt Tuning strategy instead of Finetuning')
# Prompt_Token_num
parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')
# PromptUnFreeze
parser.add_argument('--PromptUnFreeze', action='store_true', help='prompt tuning with all parameaters un-freezed')
# prompt model basic model path
parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
help='Finetuning a trained model in this dataset')
# Dataset based parameters
parser.add_argument('--num_classes', default=0, type=int, help='classification number, default 0 for auto-fit')
parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image') # 224 256 384 1000
# Test setting parameters
parser.add_argument('--batch_size', default=1, type=int, help='testing batch_size default 1')
# check_minibatch for painting pics
parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
main(args)
|