File size: 18,801 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
"""
Testing  Script  ver: Oct 23rd 17:30
"""

from __future__ import print_function, division

import argparse
import json
import time

import torchvision
from tensorboardX import SummaryWriter

from Backbone.getmodel import get_model
from Backbone.GetPromptModel import build_promptmodel

from utils.data_augmentation import *
from utils.visual_usage import *


def test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx, test_model_idx, edge_size,
               check_minibatch=100, device=None, draw_path='../imaging_results', enable_attention_check=None,
               enable_visualize_check=True, writer=None):
    """
    Testing iteration

    :param model: model object
    :param test_dataloader: the test_dataloader obj
    :param criterion: loss func obj
    :param class_names: The name of classes for priting
    :param test_dataset_size: size of datasets

    :param model_idx: model idx for the getting trained model
    :param edge_size: image size for the input image
    :param check_minibatch: number of skip over minibatch in calculating the criteria's results etc.

    :param device: cpu/gpu object
    :param draw_path: path folder for output pic
    :param enable_attention_check: use attention_check to show the pics of models' attention areas
    :param enable_visualize_check: use visualize_check to show the pics

    :param writer: attach the records to the tensorboard backend
    """

    # scheduler is an LR scheduler object from torch.optim.lr_scheduler.
    if device is None:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    since = time.time()

    print('Epoch: Test')
    print('-' * 10)

    phase = 'test'
    index = 0
    model_time = time.time()

    # initiate the empty json dict
    json_log = {'test': {}}

    # initiate the empty log dict
    log_dict = {}
    for cls_idx in range(len(class_names)):
        log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}

    model.eval()  # Set model to evaluate mode

    # criterias, initially empty
    running_loss = 0.0
    log_running_loss = 0.0
    running_corrects = 0

    # Iterate over data.
    for inputs, labels in test_dataloader:  # use different dataloder in different phase
        inputs = inputs.to(device)
        # print('inputs[0]',type(inputs[0]))

        labels = labels.to(device)

        # zero the parameter gradients only need in training
        # optimizer.zero_grad()

        # forward
        outputs = model(inputs)
        _, preds = torch.max(outputs, 1)
        loss = criterion(outputs, labels)

        # log criterias: update
        log_running_loss += loss.item()
        running_loss += loss.item() * inputs.size(0)
        running_corrects += torch.sum(preds == labels.data)

        # Compute recision and recall for each class.
        for cls_idx in range(len(class_names)):
            # NOTICE remember to put tensor back to cpu
            tp = np.dot((labels.cpu().data == cls_idx).numpy().astype(int),
                        (preds == cls_idx).cpu().numpy().astype(int))
            tn = np.dot((labels.cpu().data != cls_idx).numpy().astype(int),
                        (preds != cls_idx).cpu().numpy().astype(int))

            fp = np.sum((preds == cls_idx).cpu().numpy()) - tp

            fn = np.sum((labels.cpu().data == cls_idx).numpy()) - tp

            # log_dict[cls_idx] = {'tp': 0, 'tn': 0, 'fp': 0, 'fn': 0}
            log_dict[class_names[cls_idx]]['tp'] += tp
            log_dict[class_names[cls_idx]]['tn'] += tn
            log_dict[class_names[cls_idx]]['fp'] += fp
            log_dict[class_names[cls_idx]]['fn'] += fn

        # attach the records to the tensorboard backend
        if writer is not None:
            # ...log the running loss
            writer.add_scalar(phase + ' minibatch loss',
                              float(loss.item()),
                              index)
            writer.add_scalar(phase + ' minibatch ACC',
                              float(torch.sum(preds == labels.data) / inputs.size(0)),
                              index)

        # at the checking time now
        if index % check_minibatch == check_minibatch - 1:
            model_time = time.time() - model_time

            check_index = index // check_minibatch + 1

            epoch_idx = 'test'
            print('Epoch:', epoch_idx, '   ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
                  check_index, '     time used:', model_time)

            print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)

            # how many image u want to check, should SMALLER THAN the batchsize

            if enable_attention_check:
                try:
                    check_SAA(inputs, labels, model, model_idx, edge_size, class_names, num_images=1,
                              pic_name='GradCAM_' + str(epoch_idx) + '_I_' + str(index + 1),
                              draw_path=draw_path, writer=writer)
                except:
                    print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
            else:
                pass

            if enable_visualize_check:
                visualize_check(inputs, labels, model, class_names, num_images=-1,
                                pic_name='Visual_' + str(epoch_idx) + '_I_' + str(index + 1),
                                draw_path=draw_path, writer=writer)

            model_time = time.time()
            log_running_loss = 0.0

        index += 1
    # json log: update
    json_log['test'][phase] = log_dict

    # log criterias: print
    epoch_loss = running_loss / test_dataset_size
    epoch_acc = running_corrects.double() / test_dataset_size * 100
    print('\nEpoch:  {} \nLoss: {:.4f}  Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

    for cls_idx in range(len(class_names)):
        # calculating the confusion matrix
        tp = log_dict[class_names[cls_idx]]['tp']
        tn = log_dict[class_names[cls_idx]]['tn']
        fp = log_dict[class_names[cls_idx]]['fp']
        fn = log_dict[class_names[cls_idx]]['fn']
        tp_plus_fp = tp + fp
        tp_plus_fn = tp + fn
        fp_plus_tn = fp + tn
        fn_plus_tn = fn + tn

        # precision
        if tp_plus_fp == 0:
            precision = 0
        else:
            precision = float(tp) / tp_plus_fp * 100
        # recall
        if tp_plus_fn == 0:
            recall = 0
        else:
            recall = float(tp) / tp_plus_fn * 100

        # TPR (sensitivity)
        TPR = recall

        # TNR (specificity)
        # FPR
        if fp_plus_tn == 0:
            TNR = 0
            FPR = 0
        else:
            TNR = tn / fp_plus_tn * 100
            FPR = fp / fp_plus_tn * 100

        # NPV
        if fn_plus_tn == 0:
            NPV = 0
        else:
            NPV = tn / fn_plus_tn * 100

        print('{} precision: {:.4f}  recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
        print('{} sensitivity: {:.4f}  specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
        print('{} FPR: {:.4f}  NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
        print('{} TP: {}'.format(class_names[cls_idx], tp))
        print('{} TN: {}'.format(class_names[cls_idx], tn))
        print('{} FP: {}'.format(class_names[cls_idx], fp))
        print('{} FN: {}'.format(class_names[cls_idx], fn))

    print('\n')

    time_elapsed = time.time() - since
    print('Testing complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))

    # attach the records to the tensorboard backend
    if writer is not None:
        writer.close()

    # save json_log  indent=2 for better view
    json.dump(json_log, open(os.path.join(draw_path, test_model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)

    return model


def main(args):
    if args.paint:
        # use Agg kernal, not painting in the front-desk
        import matplotlib
        matplotlib.use('Agg')

    gpu_idx = args.gpu_idx  # GPU idx start with0, -1 to use multiple GPU

    enable_tensorboard = args.enable_tensorboard  # False

    enable_attention_check = args.enable_attention_check  # False
    enable_visualize_check = args.enable_visualize_check  # False

    data_augmentation_mode = args.data_augmentation_mode  # 0

    # Prompt
    PromptTuning = args.PromptTuning  # None  "Deep" / "Shallow"
    Prompt_Token_num = args.Prompt_Token_num  # 20
    PromptUnFreeze = args.PromptUnFreeze  # False

    model_idx = args.model_idx  # the model we are going to use. by the format of Model_size_other_info

    # structural parameter
    drop_rate = args.drop_rate
    attn_drop_rate = args.attn_drop_rate
    drop_path_rate = args.drop_path_rate
    use_cls_token = False if args.cls_token_off else True
    use_pos_embedding = False if args.pos_embedding_off else True
    use_att_module = None if args.att_module == 'None' else args.att_module

    # PATH info
    draw_root = args.draw_root
    model_path = args.model_path
    dataroot = args.dataroot
    model_path_by_hand = args.model_path_by_hand  # None
    # Pre_Trained model basic for prompt turned model's test
    Pre_Trained_model_path = args.Pre_Trained_model_path  # None

    # CLS_ is for the CLS trained models, MIL_Stripe will be MIL trained and use Stripe to test
    test_model_idx = 'CLS_' + model_idx + '_test'
    # NOTICE: MIL model should only be tested in stripe model in this test.py

    draw_path = os.path.join(draw_root, test_model_idx)

    # load Finetuning trained model by its task-based saving name,
    # also support MIL-SI model but the MIL_Stripe is required
    if model_path_by_hand is None:
        # CLS_ is for the CLS training, MIL will be MIL training
        save_model_path = os.path.join(model_path, 'CLS_' + model_idx + '.pth')
    else:
        save_model_path = model_path_by_hand

    if not os.path.exists(draw_path):
        os.makedirs(draw_path)

    # choose the test dataset
    test_dataroot = os.path.join(dataroot, 'test')

    # dataset info
    num_classes = args.num_classes  # default 0 for auto-fit
    edge_size = args.edge_size

    # validating setting
    batch_size = args.batch_size
    criterion = nn.CrossEntropyLoss()

    # Data Augmentation is not used in validating or testing
    data_transforms = data_augmentation(data_augmentation_mode, edge_size=edge_size)

    # test setting is the same as the validate dataset's setting
    test_datasets = torchvision.datasets.ImageFolder(test_dataroot, data_transforms['val'])
    test_dataset_size = len(test_datasets)
    # skip minibatch none to draw 20 figs
    check_minibatch = args.check_minibatch if args.check_minibatch is not None else test_dataset_size // (
            20 * batch_size)

    test_dataloader = torch.utils.data.DataLoader(test_datasets, batch_size=batch_size, shuffle=False, num_workers=1)

    class_names = [d.name for d in os.scandir(test_dataroot) if d.is_dir()]
    class_names.sort()

    if num_classes == 0:
        print("class_names:", class_names)
        num_classes = len(class_names)
    else:
        if len(class_names) == num_classes:
            print("class_names:", class_names)
        else:
            print('classfication number of the model mismatch the dataset requirement of:', len(class_names))
            return -1

    # get model
    pretrained_backbone = False  # model is trained already, pretrained backbone weight is useless here

    if PromptTuning is None:
        model = get_model(num_classes, edge_size, model_idx, drop_rate, attn_drop_rate, drop_path_rate,
                          pretrained_backbone, use_cls_token, use_pos_embedding, use_att_module)
    else:
        if Pre_Trained_model_path is not None and os.path.exists(Pre_Trained_model_path):
            base_state_dict = torch.load(Pre_Trained_model_path)
        else:
            base_state_dict = 'timm'
            print('base_state_dict of timm')

        print('Test the PromptTuning of ', model_idx)
        print('Prompt VPT type:', PromptTuning)
        model = build_promptmodel(num_classes, edge_size, model_idx, Prompt_Token_num=Prompt_Token_num,
                                  VPT_type=PromptTuning, base_state_dict=base_state_dict)

    try:
        if PromptTuning is None:
            model.load_state_dict(torch.load(save_model_path))
        else:
            if PromptUnFreeze:
                model.load_state_dict(torch.load(save_model_path))
            else:
                model.load_prompt(torch.load(save_model_path))

        print("model loaded")
        print("model :", model_idx)

    except:
        try:
            model = nn.DataParallel(model)

            if PromptTuning is None:
                model.load_state_dict(torch.load(save_model_path))
            else:
                if PromptUnFreeze:
                    model.load_state_dict(torch.load(save_model_path))
                else:
                    model.load_prompt(torch.load(save_model_path))

            print("DataParallel model loaded")
        except:
            print("model loading erro!!")
            return -1

    if gpu_idx == -1:
        if torch.cuda.device_count() > 1:
            print("Use", torch.cuda.device_count(), "GPUs!")
            # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
            model = nn.DataParallel(model)
        else:
            print('we dont have more GPU idx here, try to use gpu_idx=0')
            try:
                # setting 0 for: only card idx 0 is sighted for this code
                os.environ['CUDA_VISIBLE_DEVICES'] = '0'
            except:
                print("GPU distributing ERRO occur use CPU instead")

    else:
        # Decide which device we want to run on
        try:
            # setting k for: only card idx k is sighted for this code
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
        except:
            print('we dont have that GPU idx here, try to use gpu_idx=0')
            try:
                # setting 0 for: only card idx 0 is sighted for this code
                os.environ['CUDA_VISIBLE_DEVICES'] = '0'
            except:
                print("GPU distributing ERRO occur use CPU instead")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # single card for test

    model.to(device)

    # start tensorboard backend
    if enable_tensorboard:
        writer = SummaryWriter(draw_path)
    else:
        writer = None

    # if you want to run tensorboard locally
    # nohup tensorboard --logdir=/home/experiments/runs --host=0.0.0.0 --port=7777 &

    print("*********************************{}*************************************".format('setting'))
    print(args)

    test_model(model, test_dataloader, criterion, class_names, test_dataset_size, model_idx=model_idx,
               test_model_idx=test_model_idx, edge_size=edge_size, check_minibatch=check_minibatch,
               device=device, draw_path=draw_path, enable_attention_check=enable_attention_check,
               enable_visualize_check=enable_visualize_check, writer=writer)


def get_args_parser():
    parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')

    # Model Name or index
    parser.add_argument('--model_idx', default='ViT_base', type=str, help='Model Name or index')

    # drop_rate, attn_drop_rate, drop_path_rate
    parser.add_argument('--drop_rate', default=0.0, type=float, help='dropout rate , default 0.0')
    parser.add_argument('--attn_drop_rate', default=0.0, type=float, help='dropout rate Aftter Attention, default 0.0')
    parser.add_argument('--drop_path_rate', default=0.0, type=float, help='drop path for stochastic depth, default 0.0')

    # Abalation Studies for MSHT
    parser.add_argument('--cls_token_off', action='store_true', help='use cls_token in model structure')
    parser.add_argument('--pos_embedding_off', action='store_true', help='use pos_embedding in model structure')
    # 'SimAM', 'CBAM', 'SE' 'None'
    parser.add_argument('--att_module', default='SimAM', type=str, help='use which att_module in model structure')

    # Enviroment parameters
    parser.add_argument('--gpu_idx', default=0, type=int,
                        help='use a single GPU with its index, -1 to use multiple GPU')

    # Path parameters
    parser.add_argument('--dataroot', default=r'/data/k5_dataset',
                        help='path to dataset')
    parser.add_argument('--model_path', default=r'/home/saved_models',
                        help='root path to save model state-dict, model will be find by name')
    parser.add_argument('--draw_root', default=r'/home/runs',
                        help='path to draw and save tensorboard output')
    # model_path_by_hand
    parser.add_argument('--model_path_by_hand', default=None, type=str, help='specified path to a model state-dict')

    # Help tool parameters
    parser.add_argument('--paint', action='store_false', help='paint in front desk')  # matplotlib.use('Agg')

    # check tool parameters
    parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')

    parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
    parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')

    parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')

    # PromptTuning
    parser.add_argument('--PromptTuning', default=None, type=str,
                        help='use Prompt Tuning strategy instead of Finetuning')
    # Prompt_Token_num
    parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')
    # PromptUnFreeze
    parser.add_argument('--PromptUnFreeze', action='store_true', help='prompt tuning with all parameaters un-freezed')
    # prompt model basic model path
    parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
                        help='Finetuning a trained model in this dataset')

    # Dataset based parameters
    parser.add_argument('--num_classes', default=0, type=int, help='classification number, default 0 for auto-fit')
    parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image')  # 224 256 384 1000

    # Test setting parameters
    parser.add_argument('--batch_size', default=1, type=int, help='testing batch_size default 1')
    # check_minibatch for painting pics
    parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')

    return parser


if __name__ == '__main__':
    parser = get_args_parser()
    args = parser.parse_args()
    main(args)