File size: 38,702 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 |
"""
Training Script ver: Oct 23rd 17:30
dataset structure: ImageNet
image folder dataset is used.
"""
from __future__ import print_function, division
import argparse
import copy
import json
import time
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from tensorboardX import SummaryWriter
from torch.optim import lr_scheduler
from torchsummary import summary
from utils.data_augmentation import data_augmentation
from utils.SoftCrossEntropyLoss import SoftlabelCrossEntropy
from utils.online_augmentations import get_online_augmentation
from utils.visual_usage import visualize_check, check_SAA
from utils.tools import setup_seed, del_file, FixStateDict
from utils.schedulers import patch_scheduler, ratio_scheduler
from Backbone.getmodel import get_model
from Backbone.GetPromptModel import build_promptmodel
# Training Strategy
def better_performance(temp_acc, temp_vac, best_acc, best_vac): # determin which epoch have the best model
if temp_vac >= best_vac and temp_acc >= best_acc:
return True
elif temp_vac > best_vac:
return True
else:
return False
def train_model(model, dataloaders, criterion, optimizer, class_names, dataset_sizes, Augmentation=None,
fix_position_ratio_scheduler=None, puzzle_patch_size_scheduler=None, edge_size=384,
model_idx=None, num_epochs=25, intake_epochs=0, check_minibatch=100, scheduler=None, device=None,
draw_path='../imagingresults', enable_attention_check=False, enable_visualize_check=False,
enable_sam=False, writer=None):
"""
Training iteration
:param model: model object
:param dataloaders: 2 dataloader(train and val) dict
:param criterion: loss func obj
:param optimizer: optimizer obj
:param class_names: The name of classes for priting
:param dataset_sizes: size of datasets
:param Augmentation: Online augmentation methods
:param fix_position_ratio_scheduler: Online augmentation fix_position_ratio_scheduler
:param puzzle_patch_size_scheduler: Online augmentation puzzle_patch_size_scheduler
:param edge_size: image size for the input image
:param model_idx: model idx for the getting pre-setted model
:param num_epochs: total training epochs
:param intake_epochs: number of skip over epochs when choosing the best model
:param check_minibatch: number of skip over minibatch in calculating the criteria's results etc.
:param scheduler: scheduler is an LR scheduler object from torch.optim.lr_scheduler.
:param device: cpu/gpu object
:param draw_path: path folder for output pic
:param enable_attention_check: use attention_check to show the pics of models' attention areas
:param enable_visualize_check: use visualize_check to show the pics
:param enable_sam: use SAM training strategy
:param writer: attach the records to the tensorboard backend
"""
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
since = time.time()
# for saving the best model state dict
best_model_wts = copy.deepcopy(model.state_dict()) # deepcopy
# initial an empty dict
json_log = {}
# initial best performance
best_acc = 0.0
best_vac = 0.0
temp_acc = 0.0
temp_vac = 0.0
best_epoch_idx = 1
epoch_loss = 0.0 # initial value for loss-drive
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch + 1, num_epochs))
print('-' * 10)
# record json log, initially empty
json_log[str(epoch + 1)] = {}
# Each epoch has a training and validation phase
for phase in ['train', 'val']: # alternatively train/val
index = 0
check_index = -1 # set a visulize check at the end of each epoch's train and val
model_time = time.time()
# initiate the empty log dict
log_dict = {}
for cls_idx in range(len(class_names)):
# only float type is allowed in json, set to float inside
log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
# criterias, initially empty
running_loss = 0.0
log_running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]: # use different dataloder in different phase
inputs = inputs.to(device) # print('inputs[0]',type(inputs[0]))
# NOTICE in CLS task the labels' type is long tensor([B]),not one-hot ([B,CLS])
labels = labels.to(device)
# Online Augmentations on device
if Augmentation is not None:
if phase == 'train':
# cellmix
if fix_position_ratio_scheduler is not None and puzzle_patch_size_scheduler is not None:
# loss-drive
fix_position_ratio = fix_position_ratio_scheduler(epoch, epoch_loss)
puzzle_patch_size = puzzle_patch_size_scheduler(epoch, epoch_loss)
inputs, labels, GT_long_labels = Augmentation(inputs, labels,
fix_position_ratio, puzzle_patch_size)
# Counterpart augmentations
else:
inputs, labels, GT_long_labels = Augmentation(inputs, labels)
else: # Val
inputs, labels, GT_long_labels = Augmentation(inputs, labels, act=False)
else:
GT_long_labels = labels # store ori_label on CPU
# zero the parameter gradients
if not enable_sam:
optimizer.zero_grad()
# forward
# track grad if only in train!
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs) # pred outputs of confidence: [B,CLS]
_, preds = torch.max(outputs, 1) # idx outputs: [B] each is a idx
loss = criterion(outputs, labels) # cross entrphy of one-hot outputs: [B,CLS] and idx label [B]
# backward + optimize only if in training phase
if phase == 'train':
if enable_sam:
loss.backward()
# first forward-backward pass
optimizer.first_step(zero_grad=True)
# second forward-backward pass
loss2 = criterion(model(inputs), labels) # SAM need another model(inputs)
loss2.backward() # make sure to do a full forward pass when using SAM
optimizer.second_step(zero_grad=True)
else:
loss.backward()
optimizer.step()
# log criterias: update
log_running_loss += loss.item()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds.cpu() == GT_long_labels.cpu().data)
# Compute precision and recall for each class.
for cls_idx in range(len(class_names)):
tp = np.dot((GT_long_labels.cpu().data == cls_idx).numpy().astype(int),
(preds == cls_idx).cpu().numpy().astype(int))
tn = np.dot((GT_long_labels.cpu().data != cls_idx).numpy().astype(int),
(preds != cls_idx).cpu().numpy().astype(int))
fp = np.sum((preds == cls_idx).cpu().numpy()) - tp
fn = np.sum((GT_long_labels.cpu().data == cls_idx).numpy()) - tp
# log_dict[cls_idx] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0} set to float inside
log_dict[class_names[cls_idx]]['tp'] += tp
log_dict[class_names[cls_idx]]['tn'] += tn
log_dict[class_names[cls_idx]]['fp'] += fp
log_dict[class_names[cls_idx]]['fn'] += fn
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' minibatch loss',
float(loss.item()),
epoch * len(dataloaders[phase]) + index)
writer.add_scalar(phase + ' minibatch ACC',
float(torch.sum(preds.cpu() == GT_long_labels.cpu().data) / inputs.size(0)),
epoch * len(dataloaders[phase]) + index)
# at the checking time now
if index % check_minibatch == check_minibatch - 1:
model_time = time.time() - model_time
check_index = index // check_minibatch + 1
epoch_idx = epoch + 1
print('Epoch:', epoch_idx, ' ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
check_index, ' time used:', model_time)
print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)
if enable_visualize_check:
visualize_check(inputs, GT_long_labels, model, class_names, num_images=-1,
pic_name='Visual_' + phase + '_E_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
if enable_attention_check:
try:
check_SAA(inputs, GT_long_labels, model, model_idx, edge_size, class_names, num_images=1,
pic_name='GradCAM_' + phase + '_E_' + str(epoch_idx) + '_I_' + str(index + 1),
draw_path=draw_path, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
model_time = time.time()
log_running_loss = 0.0
index += 1
if phase == 'train':
if scheduler is not None: # lr scheduler: update
scheduler.step()
# at the last of train/val in each epoch, if no check has been triggered
if check_index == -1:
epoch_idx = epoch + 1
if enable_visualize_check:
visualize_check(inputs, GT_long_labels, model, class_names, num_images=-1,
pic_name='Visual_' + phase + '_E_' + str(epoch_idx),
draw_path=draw_path, writer=writer)
if enable_attention_check:
try:
check_SAA(inputs, GT_long_labels, model, model_idx, edge_size, class_names, num_images=1,
pic_name='GradCAM_' + phase + '_E_' + str(epoch_idx),
draw_path=draw_path, writer=writer)
except:
print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
else:
pass
# log criterias: print
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase] * 100
print('\nEpoch: {} {} \nLoss: {:.4f} Acc: {:.4f}'.format(epoch + 1, phase, epoch_loss, epoch_acc))
if phase == 'train' and fix_position_ratio_scheduler is not None \
and puzzle_patch_size_scheduler is not None:
print('\nEpoch: {}, Fix_position_ratio: {}, Puzzle_patch_size: '
'{}'.format(epoch + 1, fix_position_ratio, puzzle_patch_size))
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' loss',
float(epoch_loss),
epoch + 1)
writer.add_scalar(phase + ' ACC',
float(epoch_acc),
epoch + 1)
# calculating the confusion matrix
for cls_idx in range(len(class_names)):
tp = log_dict[class_names[cls_idx]]['tp']
tn = log_dict[class_names[cls_idx]]['tn']
fp = log_dict[class_names[cls_idx]]['fp']
fn = log_dict[class_names[cls_idx]]['fn']
tp_plus_fp = tp + fp
tp_plus_fn = tp + fn
fp_plus_tn = fp + tn
fn_plus_tn = fn + tn
# precision
if tp_plus_fp == 0:
precision = 0
else:
precision = float(tp) / tp_plus_fp * 100
# recall
if tp_plus_fn == 0:
recall = 0
else:
recall = float(tp) / tp_plus_fn * 100
# TPR (sensitivity)
TPR = recall
# TNR (specificity)
# FPR
if fp_plus_tn == 0:
TNR = 0
FPR = 0
else:
TNR = tn / fp_plus_tn * 100
FPR = fp / fp_plus_tn * 100
# NPV
if fn_plus_tn == 0:
NPV = 0
else:
NPV = tn / fn_plus_tn * 100
print('{} precision: {:.4f} recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
print('{} sensitivity: {:.4f} specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
print('{} FPR: {:.4f} NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
print('{} TP: {}'.format(class_names[cls_idx], tp))
print('{} TN: {}'.format(class_names[cls_idx], tn))
print('{} FP: {}'.format(class_names[cls_idx], fp))
print('{} FN: {}'.format(class_names[cls_idx], fn))
# attach the records to the tensorboard backend
if writer is not None:
# ...log the running loss
writer.add_scalar(phase + ' ' + class_names[cls_idx] + ' precision',
precision,
epoch + 1)
writer.add_scalar(phase + ' ' + class_names[cls_idx] + ' recall',
recall,
epoch + 1)
# json log: update
json_log[str(epoch + 1)][phase] = log_dict
if phase == 'val':
temp_vac = epoch_acc
else:
temp_acc = epoch_acc # not useful actually
# deep copy the model
if phase == 'val' and better_performance(temp_acc, temp_vac, best_acc, best_vac) and epoch >= intake_epochs:
# what is better? we now use the wildly used method only
best_epoch_idx = epoch + 1
best_acc = temp_acc
best_vac = temp_vac
best_model_wts = copy.deepcopy(model.state_dict())
best_log_dic = log_dict
print('\n')
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best epoch idx: ', best_epoch_idx)
print('Best epoch train Acc: {:4f}'.format(best_acc))
print('Best epoch val Acc: {:4f}'.format(best_vac))
for cls_idx in range(len(class_names)):
tp = best_log_dic[class_names[cls_idx]]['tp']
tn = best_log_dic[class_names[cls_idx]]['tn']
fp = best_log_dic[class_names[cls_idx]]['fp']
fn = best_log_dic[class_names[cls_idx]]['fn']
tp_plus_fp = tp + fp
tp_plus_fn = tp + fn
fp_plus_tn = fp + tn
fn_plus_tn = fn + tn
# precision
if tp_plus_fp == 0:
precision = 0
else:
precision = float(tp) / tp_plus_fp * 100
# recall
if tp_plus_fn == 0:
recall = 0
else:
recall = float(tp) / tp_plus_fn * 100
# TPR (sensitivity)
TPR = recall
# TNR (specificity)
# FPR
if fp_plus_tn == 0:
TNR = 0
FPR = 0
else:
TNR = tn / fp_plus_tn * 100
FPR = fp / fp_plus_tn * 100
# NPV
if fn_plus_tn == 0:
NPV = 0
else:
NPV = tn / fn_plus_tn * 100
print('{} precision: {:.4f} recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
print('{} sensitivity: {:.4f} specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
print('{} FPR: {:.4f} NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
# attach the records to the tensorboard backend
if writer is not None:
writer.close()
# load best model weights as final model training result
model.load_state_dict(best_model_wts)
# save json_log indent=2 for better view
json.dump(json_log, open(os.path.join(draw_path, model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)
return model
def main(args):
if args.paint:
# use Agg kernal, not painting in the front-desk
import matplotlib
matplotlib.use('Agg')
enable_tensorboard = args.enable_tensorboard # True
enable_attention_check = args.enable_attention_check # False 'CAM' 'SAA'
enable_visualize_check = args.enable_visualize_check # False
enable_sam = args.enable_sam # False
data_augmentation_mode = args.data_augmentation_mode # 0
linearprobing = args.linearprobing # False
Pre_Trained_model_path = args.Pre_Trained_model_path # None
Prompt_state_path = args.Prompt_state_path # None
# Prompt
PromptTuning = args.PromptTuning # None "Deep" / "Shallow"
Prompt_Token_num = args.Prompt_Token_num # 20
PromptUnFreeze = args.PromptUnFreeze # False
gpu_idx = args.gpu_idx # GPU idx start with0, -1 to use multipel GPU
# model info
model_idx = args.model_idx # the model we are going to use. by the format of Model_size_other_info
# structural parameter
drop_rate = args.drop_rate
attn_drop_rate = args.attn_drop_rate
drop_path_rate = args.drop_path_rate
use_cls_token = False if args.cls_token_off else True
use_pos_embedding = False if args.pos_embedding_off else True
use_att_module = None if args.att_module == 'None' else args.att_module
# pretrained_backbone
pretrained_backbone = False if args.backbone_PT_off else True
# classification required number of your dataset
num_classes = args.num_classes # default 0 for auto-fit
# image size for the input image
edge_size = args.edge_size # 224 384 1000
# batch info
batch_size = args.batch_size # 8
num_workers = args.num_workers # main training num_workers 4
num_epochs = args.num_epochs # 50
intake_epochs = args.intake_epochs # 0
check_minibatch = args.check_minibatch if args.check_minibatch is not None else 400 // batch_size
lr = args.lr # 0.000007
lrf = args.lrf # 0.0
opt_name = args.opt_name # 'Adam'
# PATH info
draw_root = args.draw_root
model_path = args.model_path
dataroot = args.dataroot
draw_path = os.path.join(draw_root, 'CLS_' + model_idx) # CLS_ is for the CLS training, MIL will be MIL training
save_model_path = os.path.join(model_path, 'CLS_' + model_idx + '.pth')
if not os.path.exists(model_path):
os.makedirs(model_path)
if os.path.exists(draw_path):
del_file(draw_path) # fixme clear the output folder, NOTICE this may be DANGEROUS
else:
os.makedirs(draw_path)
# Train Augmentation
augmentation_name = args.augmentation_name # None
# Data Augmentation
data_transforms = data_augmentation(data_augmentation_mode, edge_size=edge_size)
datasets = {x: torchvision.datasets.ImageFolder(os.path.join(dataroot, x), data_transforms[x]) for x in
['train', 'val']} # 2 dataset obj is prepared here and combine together
dataset_sizes = {x: len(datasets[x]) for x in ['train', 'val']} # size of each dataset
dataloaders = {'train': torch.utils.data.DataLoader(datasets['train'], batch_size=batch_size, shuffle=True,
num_workers=num_workers, drop_last=True), # colab suggest 2
'val': torch.utils.data.DataLoader(datasets['val'], batch_size=batch_size, shuffle=False,
num_workers=num_workers // 4 + 1, drop_last=True)
}
class_names = [d.name for d in os.scandir(os.path.join(dataroot, 'train')) if d.is_dir()]
class_names.sort()
if num_classes == 0:
print("class_names:", class_names)
num_classes = len(class_names)
else:
if len(class_names) == num_classes:
print("class_names:", class_names)
else:
print('classfication number of the model mismatch the dataset requirement of:', len(class_names))
return -1
print("*********************************{}*************************************".format('setting'))
print(args)
# start tensorboard backend
if enable_tensorboard:
writer = SummaryWriter(draw_path)
else:
writer = None
# if u run locally
# nohup tensorboard --logdir=/home/MSHT/runs --host=0.0.0.0 --port=7777 &
# tensorboard --logdir=/home/ZTY/runs --host=0.0.0.0 --port=7777
if gpu_idx == -1: # use all cards
if torch.cuda.device_count() > 1:
print("Use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
gpu_use = gpu_idx
else:
print('we dont have more GPU idx here, try to use gpu_idx=0')
try:
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # setting k for: only card idx k is sighted for this code
gpu_use = 0
except:
print("GPU distributing ERRO occur use CPU instead")
gpu_use = 'cpu'
else:
# Decide which device we want to run on
try:
# setting k for: only card idx k is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
gpu_use = gpu_idx
except:
print('we dont have that GPU idx here, try to use gpu_idx=0')
try:
# setting 0 for: only card idx 0 is sighted for this code
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
gpu_use = 0
except:
print("GPU distributing ERRO occur use CPU instead")
gpu_use = 'cpu'
# device environment
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# get model
if PromptTuning is not None:
print('PromptTuning of ', model_idx)
print('Prompt VPT type:', PromptTuning)
# initialize the model backbone:
if Pre_Trained_model_path is None or Pre_Trained_model_path == 'timm':
base_state_dict = 'timm'
print('backbone base_state_dict of timm')
elif Pre_Trained_model_path is not None and os.path.exists(Pre_Trained_model_path):
print('backbone base_state_dict at: ', Pre_Trained_model_path)
base_state_dict = torch.load(Pre_Trained_model_path)
else:
print('invalid Pre_Trained_model_path for prompting at: ', Pre_Trained_model_path)
raise
# put the additional prompt tokens to model:
if Prompt_state_path is None:
prompt_state_dict = None
print('prompting with empty prompt_state: prompt_state of None')
elif Prompt_state_path is not None and os.path.exists(Prompt_state_path):
print('prompting with prompt_state at: ', Prompt_state_path)
prompt_state_dict = torch.load(Prompt_state_path)
else:
print('invalid prompt_state_dict for prompting, path at:', Prompt_state_path)
raise
model = build_promptmodel(num_classes, edge_size, model_idx, Prompt_Token_num=Prompt_Token_num,
VPT_type=PromptTuning, prompt_state_dict=prompt_state_dict,
base_state_dict=base_state_dict)
# Use FineTuning with prompt tokens (when PromptUnFreeze==True)
if PromptUnFreeze:
model.UnFreeze()
print('prompt tuning with all parameaters un-freezed')
else:
# get model: randomly initiate model, except the backbone CNN(when pretrained_backbone is True)
model = get_model(num_classes, edge_size, model_idx, drop_rate, attn_drop_rate, drop_path_rate,
pretrained_backbone, use_cls_token, use_pos_embedding, use_att_module)
# Manually get the model pretrained on the Imagenet1000
if Pre_Trained_model_path is not None:
if os.path.exists(Pre_Trained_model_path):
state_dict = FixStateDict(torch.load(Pre_Trained_model_path), remove_key_head='head')
model.load_state_dict(state_dict, False)
print('Specified backbone model weight loaded:', Pre_Trained_model_path)
else:
print('Specified Pre_Trained_model_path:' + Pre_Trained_model_path, ' is NOT avaliable!!!!\n')
raise
else:
print('building model (no-prompt) with pretrained_backbone status:',pretrained_backbone)
if pretrained_backbone is True:
print('timm loaded')
if linearprobing:
# Only tuning the last FC layer for CLS task
module_all = 0
for child in model.children(): # find all nn.modules
module_all += 1
for param in model.parameters(): # freeze all parameters
param.requires_grad = False
for module_idx, child in enumerate(model.children()):
if module_idx == module_all: # Unfreeze the parameters of the last FC layer
for param in child.parameters():
param.requires_grad = True
print('GPU:', gpu_use)
if gpu_use == -1:
model = nn.DataParallel(model)
model.to(device)
try:
summary(model, input_size=(3, edge_size, edge_size)) # should be after .to(device)
except:
pass
print("model :", model_idx)
# Augmentation
Augmentation = get_online_augmentation(augmentation_name, p=0.5, class_num=num_classes,
batch_size=batch_size, edge_size=edge_size, device=device)
if augmentation_name != 'CellMix-Split' and augmentation_name != 'CellMix-Group' \
and augmentation_name != 'CellMix-Random':
fix_position_ratio_scheduler = None
puzzle_patch_size_scheduler = None
else:
# setting puzzle_patch_size and fix_position_ratio schedulers
fix_position_ratio_scheduler = ratio_scheduler(total_epoches=num_epochs,
warmup_epochs=0,
basic_ratio=0.5,
strategy=args.ratio_strategy, # 'linear'
fix_position_ratio=args.fix_position_ratio,
threshold=args.loss_drive_threshold)
puzzle_patch_size_scheduler = patch_scheduler(total_epoches=num_epochs,
warmup_epochs=0,
edge_size=edge_size,
basic_patch=16,
strategy=args.patch_strategy, # 'random', 'linear' or 'loop'
threshold=args.loss_drive_threshold,
fix_patch_size=args.fix_patch_size, # 16,32,48,64,96,128,192
patch_size_jump=args.patch_size_jump) # 'odd' or 'even'
# Default cross entrphy of one-hot outputs: [B,CLS] and idx label [B] long tensor
# augmentation loss is SoftlabelCrossEntropy
criterion = SoftlabelCrossEntropy() \
if Augmentation is not None and augmentation_name != 'Cutout' else nn.CrossEntropyLoss()
if opt_name == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.8, weight_decay=0.005)
scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5) # 15 0.1 default SGD StepLR scheduler
elif opt_name == 'Adam':
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.01)
scheduler = None
else:
print('no optimizer')
raise
if enable_sam:
from utils.sam import SAM
if opt_name == 'SGD':
base_optimizer = torch.optim.SGD # define an optimizer for the "sharpness-aware" update
optimizer = SAM(model.parameters(), base_optimizer, lr=lr, momentum=0.8)
scheduler = None
elif opt_name == 'Adam':
base_optimizer = torch.optim.Adam # define an optimizer for the "sharpness-aware" update
optimizer = SAM(model.parameters(), base_optimizer, lr=lr, weight_decay=0.01)
else:
print('no optimizer')
raise
if lrf > 0: # use cosine learning rate schedule
import math
# cosine Scheduler by https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: ((1 + math.cos(x * math.pi / num_epochs)) / 2) * (1 - lrf) + lrf # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
# train
model_ft = train_model(model, dataloaders, criterion, optimizer, class_names, dataset_sizes,
fix_position_ratio_scheduler=fix_position_ratio_scheduler,
puzzle_patch_size_scheduler=puzzle_patch_size_scheduler,
Augmentation=Augmentation,
edge_size=edge_size, model_idx=model_idx, num_epochs=num_epochs,
intake_epochs=intake_epochs, check_minibatch=check_minibatch,
scheduler=scheduler, device=device, draw_path=draw_path,
enable_attention_check=enable_attention_check,
enable_visualize_check=enable_visualize_check,
enable_sam=enable_sam, writer=writer)
# save model if its a multi-GPU model, save as a single GPU one too
if gpu_use == -1:
if PromptTuning is None:
torch.save(model_ft.module.state_dict(), save_model_path)
else:
if PromptUnFreeze:
torch.save(model_ft.module.state_dict(), save_model_path)
else:
prompt_state_dict = model_ft.module.obtain_prompt()
# fixme maybe bug at DP module.obtain_prompt, just model.obtain_prompt is enough
torch.save(prompt_state_dict, save_model_path)
print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)
else:
if PromptTuning is None:
torch.save(model_ft.state_dict(), save_model_path)
else:
if PromptUnFreeze:
torch.save(model_ft.state_dict(), save_model_path)
else:
prompt_state_dict = model_ft.obtain_prompt()
torch.save(prompt_state_dict, save_model_path)
print('model trained by GPU (idx:' + str(gpu_use) + ') has been saved at ', save_model_path)
def get_args_parser():
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Model Name or index
parser.add_argument('--model_idx', default='Hybrid2_384_401_testsample', type=str, help='Model Name or index')
# drop_rate, attn_drop_rate, drop_path_rate
parser.add_argument('--drop_rate', default=0.0, type=float, help='dropout rate , default 0.0')
parser.add_argument('--attn_drop_rate', default=0.0, type=float, help='dropout rate Aftter Attention, default 0.0')
parser.add_argument('--drop_path_rate', default=0.0, type=float, help='drop path for stochastic depth, default 0.0')
# Abalation Studies
parser.add_argument('--cls_token_off', action='store_true', help='use cls_token in model structure')
parser.add_argument('--pos_embedding_off', action='store_true', help='use pos_embedding in model structure')
# 'SimAM', 'CBAM', 'SE' 'None'
parser.add_argument('--att_module', default='SimAM', type=str, help='use which att_module in model structure')
# backbone_PT_off by default is false, in default setting the backbone weight is required
parser.add_argument('--backbone_PT_off', action='store_true', help='use a freash backbone weight in training')
# Enviroment parameters
parser.add_argument('--gpu_idx', default=-1, type=int,
help='use a single GPU with its index, -1 to use multiple GPU')
# Path parameters
parser.add_argument('--dataroot', default='/data/MIL_Experiment/dataset/ROSE_CLS',
help='path to dataset')
parser.add_argument('--model_path', default='/home/pancreatic-cancer-project/saved_models',
help='path to save model state-dict')
parser.add_argument('--draw_root', default='/home/pancreatic-cancer-project/runs',
help='path to draw and save tensorboard output')
# Help tool parameters
parser.add_argument('--paint', action='store_false', help='paint in front desk') # matplotlib.use('Agg')
# check tool parameters
parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')
parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')
# Tuning setting
# PromptTuning
parser.add_argument('--PromptTuning', default=None, type=str,
help='use Prompt Tuning strategy instead of Finetuning')
# Prompt_Token_num
parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')
# PromptUnFreeze
parser.add_argument('--PromptUnFreeze', action='store_true', help='prompt tuning with all parameaters un-freezed')
# linearprobing
parser.add_argument('--linearprobing', action='store_true', help='use linearprobing tuning')
# Finetuning a Pretrained model at PATH
# '/home/MIL_Experiment/saved_models/Hybrid2_384_PreTrain_000.pth'
parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
help='Finetuning a trained model in this dataset')
# Prompt_state_path
parser.add_argument('--Prompt_state_path', default=None, type=str,
help='Prompt_state_path for prompt tokens')
# Training status parameters
# SAM
parser.add_argument('--enable_sam', action='store_true', help='use SAM strategy in training')
# Online augmentation_name
parser.add_argument('--augmentation_name', default=None, type=str, help='Online augmentation name')
# CellMix ablation: loss_drive strategy
parser.add_argument('--ratio_strategy', default=None, type=str, help='CellMix ratio scheduler strategy')
parser.add_argument('--patch_strategy', default=None, type=str, help='CellMix patch scheduler strategy')
parser.add_argument('--loss_drive_threshold', default=4.0, type=float, help='CellMix loss_drive_threshold')
# CellMix ablation: fix_patch_size patch_size_jump
parser.add_argument('--fix_position_ratio', default=0.5, type=float, help='CellMix ratio scheduler strategy')
parser.add_argument('--fix_patch_size', default=None, type=int, help='CellMix ablation using fix_patch_size')
parser.add_argument('--patch_size_jump', default=None, type=str, help='CellMix patch_size_jump strategy')
# Dataset based parameters
parser.add_argument('--num_classes', default=0, type=int, help='classification number, default 0 for auto-fit')
parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image') # 224 256 384 1000
# Dataset specific augmentations in dataloader
parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')
# Training seting parameters
parser.add_argument('--batch_size', default=8, type=int, help='Training batch_size default 8')
parser.add_argument('--num_epochs', default=50, type=int, help='training epochs')
parser.add_argument('--intake_epochs', default=0, type=int, help='only save model at epochs after intake_epochs')
parser.add_argument('--lr', default=0.00001, type=float, help='learing rate')
parser.add_argument('--lrf', type=float, default=0.0,
help='learing rate decay rate, default 0(not enabled), suggest 0.1 and lr=0.00005')
parser.add_argument('--opt_name', default='Adam', type=str, help='optimizer name Adam or SGD')
# check_minibatch for painting pics
parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')
parser.add_argument('--num_workers', default=2, type=int, help='use CPU num_workers , default 2 for colab')
return parser
if __name__ == '__main__':
# setting up the random seed
setup_seed(42)
parser = get_args_parser()
args = parser.parse_args()
main(args)
|