File size: 38,702 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
"""
Training     Script  ver: Oct 23rd 17:30
dataset structure: ImageNet
image folder dataset is used.
"""

from __future__ import print_function, division

import argparse
import copy
import json
import time
import os
import numpy as np

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from tensorboardX import SummaryWriter
from torch.optim import lr_scheduler
from torchsummary import summary

from utils.data_augmentation import data_augmentation
from utils.SoftCrossEntropyLoss import SoftlabelCrossEntropy
from utils.online_augmentations import get_online_augmentation
from utils.visual_usage import visualize_check, check_SAA
from utils.tools import setup_seed, del_file, FixStateDict
from utils.schedulers import patch_scheduler, ratio_scheduler

from Backbone.getmodel import get_model
from Backbone.GetPromptModel import build_promptmodel


# Training Strategy
def better_performance(temp_acc, temp_vac, best_acc, best_vac):  # determin which epoch have the best model

    if temp_vac >= best_vac and temp_acc >= best_acc:
        return True
    elif temp_vac > best_vac:
        return True
    else:
        return False


def train_model(model, dataloaders, criterion, optimizer, class_names, dataset_sizes, Augmentation=None,
                fix_position_ratio_scheduler=None, puzzle_patch_size_scheduler=None, edge_size=384,
                model_idx=None, num_epochs=25, intake_epochs=0, check_minibatch=100, scheduler=None, device=None,
                draw_path='../imagingresults', enable_attention_check=False, enable_visualize_check=False,
                enable_sam=False, writer=None):
    """
    Training iteration
    :param model: model object
    :param dataloaders: 2 dataloader(train and val) dict
    :param criterion: loss func obj
    :param optimizer: optimizer obj
    :param class_names: The name of classes for priting
    :param dataset_sizes: size of datasets
    :param Augmentation: Online augmentation methods
    :param fix_position_ratio_scheduler: Online augmentation fix_position_ratio_scheduler
    :param puzzle_patch_size_scheduler: Online augmentation puzzle_patch_size_scheduler
    :param edge_size: image size for the input image
    :param model_idx: model idx for the getting pre-setted model
    :param num_epochs: total training epochs
    :param intake_epochs: number of skip over epochs when choosing the best model
    :param check_minibatch: number of skip over minibatch in calculating the criteria's results etc.
    :param scheduler: scheduler is an LR scheduler object from torch.optim.lr_scheduler.
    :param device: cpu/gpu object
    :param draw_path: path folder for output pic
    :param enable_attention_check: use attention_check to show the pics of models' attention areas
    :param enable_visualize_check: use visualize_check to show the pics
    :param enable_sam: use SAM training strategy
    :param writer: attach the records to the tensorboard backend
    """

    if device is None:
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    since = time.time()

    # for saving the best model state dict
    best_model_wts = copy.deepcopy(model.state_dict())  # deepcopy
    # initial an empty dict
    json_log = {}

    # initial best performance
    best_acc = 0.0
    best_vac = 0.0
    temp_acc = 0.0
    temp_vac = 0.0
    best_epoch_idx = 1

    epoch_loss = 0.0  # initial value for loss-drive

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch + 1, num_epochs))
        print('-' * 10)

        # record json log, initially empty
        json_log[str(epoch + 1)] = {}

        # Each epoch has a training and validation phase
        for phase in ['train', 'val']:  # alternatively train/val

            index = 0
            check_index = -1  # set a visulize check at the end of each epoch's train and val
            model_time = time.time()

            # initiate the empty log dict
            log_dict = {}
            for cls_idx in range(len(class_names)):
                # only float type is allowed in json, set to float inside
                log_dict[class_names[cls_idx]] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0}

            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()  # Set model to evaluate mode

            # criterias, initially empty
            running_loss = 0.0
            log_running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:  # use different dataloder in different phase

                inputs = inputs.to(device)  # print('inputs[0]',type(inputs[0]))
                # NOTICE in CLS task the labels' type is long tensor([B]),not one-hot ([B,CLS])
                labels = labels.to(device)

                # Online Augmentations on device
                if Augmentation is not None:
                    if phase == 'train':
                        # cellmix
                        if fix_position_ratio_scheduler is not None and puzzle_patch_size_scheduler is not None:
                            # loss-drive
                            fix_position_ratio = fix_position_ratio_scheduler(epoch, epoch_loss)
                            puzzle_patch_size = puzzle_patch_size_scheduler(epoch, epoch_loss)

                            inputs, labels, GT_long_labels = Augmentation(inputs, labels,
                                                                          fix_position_ratio, puzzle_patch_size)
                        # Counterpart augmentations
                        else:
                            inputs, labels, GT_long_labels = Augmentation(inputs, labels)

                    else:  # Val
                        inputs, labels, GT_long_labels = Augmentation(inputs, labels, act=False)
                else:
                    GT_long_labels = labels  # store ori_label on CPU

                # zero the parameter gradients
                if not enable_sam:
                    optimizer.zero_grad()

                # forward
                # track grad if only in train!
                with torch.set_grad_enabled(phase == 'train'):

                    outputs = model(inputs)  # pred outputs of confidence: [B,CLS]
                    _, preds = torch.max(outputs, 1)  # idx outputs: [B] each is a idx
                    loss = criterion(outputs, labels)  # cross entrphy of one-hot outputs: [B,CLS] and idx label [B]

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        if enable_sam:
                            loss.backward()
                            # first forward-backward pass
                            optimizer.first_step(zero_grad=True)

                            # second forward-backward pass
                            loss2 = criterion(model(inputs), labels)  # SAM need another model(inputs)
                            loss2.backward()  # make sure to do a full forward pass when using SAM
                            optimizer.second_step(zero_grad=True)
                        else:
                            loss.backward()
                            optimizer.step()

                # log criterias: update
                log_running_loss += loss.item()
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds.cpu() == GT_long_labels.cpu().data)

                # Compute precision and recall for each class.
                for cls_idx in range(len(class_names)):
                    tp = np.dot((GT_long_labels.cpu().data == cls_idx).numpy().astype(int),
                                (preds == cls_idx).cpu().numpy().astype(int))
                    tn = np.dot((GT_long_labels.cpu().data != cls_idx).numpy().astype(int),
                                (preds != cls_idx).cpu().numpy().astype(int))

                    fp = np.sum((preds == cls_idx).cpu().numpy()) - tp

                    fn = np.sum((GT_long_labels.cpu().data == cls_idx).numpy()) - tp

                    # log_dict[cls_idx] = {'tp': 0.0, 'tn': 0.0, 'fp': 0.0, 'fn': 0.0} set to float inside
                    log_dict[class_names[cls_idx]]['tp'] += tp
                    log_dict[class_names[cls_idx]]['tn'] += tn
                    log_dict[class_names[cls_idx]]['fp'] += fp
                    log_dict[class_names[cls_idx]]['fn'] += fn

                # attach the records to the tensorboard backend
                if writer is not None:
                    # ...log the running loss
                    writer.add_scalar(phase + ' minibatch loss',
                                      float(loss.item()),
                                      epoch * len(dataloaders[phase]) + index)
                    writer.add_scalar(phase + ' minibatch ACC',
                                      float(torch.sum(preds.cpu() == GT_long_labels.cpu().data) / inputs.size(0)),
                                      epoch * len(dataloaders[phase]) + index)

                # at the checking time now
                if index % check_minibatch == check_minibatch - 1:
                    model_time = time.time() - model_time

                    check_index = index // check_minibatch + 1

                    epoch_idx = epoch + 1
                    print('Epoch:', epoch_idx, '   ', phase, 'index of ' + str(check_minibatch) + ' minibatch:',
                          check_index, '     time used:', model_time)

                    print('minibatch AVG loss:', float(log_running_loss) / check_minibatch)

                    if enable_visualize_check:
                        visualize_check(inputs, GT_long_labels, model, class_names, num_images=-1,
                                        pic_name='Visual_' + phase + '_E_' + str(epoch_idx) + '_I_' + str(index + 1),
                                        draw_path=draw_path, writer=writer)

                    if enable_attention_check:
                        try:
                            check_SAA(inputs, GT_long_labels, model, model_idx, edge_size, class_names, num_images=1,
                                      pic_name='GradCAM_' + phase + '_E_' + str(epoch_idx) + '_I_' + str(index + 1),
                                      draw_path=draw_path, writer=writer)
                        except:
                            print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
                    else:
                        pass

                    model_time = time.time()
                    log_running_loss = 0.0

                index += 1

            if phase == 'train':
                if scheduler is not None:  # lr scheduler: update
                    scheduler.step()

            # at the last of train/val in each epoch, if no check has been triggered
            if check_index == -1:
                epoch_idx = epoch + 1
                if enable_visualize_check:
                    visualize_check(inputs, GT_long_labels, model, class_names, num_images=-1,
                                    pic_name='Visual_' + phase + '_E_' + str(epoch_idx),
                                    draw_path=draw_path, writer=writer)

                if enable_attention_check:
                    try:
                        check_SAA(inputs, GT_long_labels, model, model_idx, edge_size, class_names, num_images=1,
                                  pic_name='GradCAM_' + phase + '_E_' + str(epoch_idx),
                                  draw_path=draw_path, writer=writer)
                    except:
                        print('model:', model_idx, ' with edge_size', edge_size, 'is not supported yet')
                else:
                    pass

            # log criterias: print
            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase] * 100
            print('\nEpoch: {}  {} \nLoss: {:.4f}  Acc: {:.4f}'.format(epoch + 1, phase, epoch_loss, epoch_acc))

            if phase == 'train' and fix_position_ratio_scheduler is not None \
                    and puzzle_patch_size_scheduler is not None:
                print('\nEpoch: {}, Fix_position_ratio: {}, Puzzle_patch_size: '
                      '{}'.format(epoch + 1, fix_position_ratio, puzzle_patch_size))

            # attach the records to the tensorboard backend
            if writer is not None:
                # ...log the running loss
                writer.add_scalar(phase + ' loss',
                                  float(epoch_loss),
                                  epoch + 1)
                writer.add_scalar(phase + ' ACC',
                                  float(epoch_acc),
                                  epoch + 1)

            # calculating the confusion matrix
            for cls_idx in range(len(class_names)):
                tp = log_dict[class_names[cls_idx]]['tp']
                tn = log_dict[class_names[cls_idx]]['tn']
                fp = log_dict[class_names[cls_idx]]['fp']
                fn = log_dict[class_names[cls_idx]]['fn']
                tp_plus_fp = tp + fp
                tp_plus_fn = tp + fn
                fp_plus_tn = fp + tn
                fn_plus_tn = fn + tn

                # precision
                if tp_plus_fp == 0:
                    precision = 0
                else:
                    precision = float(tp) / tp_plus_fp * 100
                # recall
                if tp_plus_fn == 0:
                    recall = 0
                else:
                    recall = float(tp) / tp_plus_fn * 100

                # TPR (sensitivity)
                TPR = recall

                # TNR (specificity)
                # FPR
                if fp_plus_tn == 0:
                    TNR = 0
                    FPR = 0
                else:
                    TNR = tn / fp_plus_tn * 100
                    FPR = fp / fp_plus_tn * 100

                # NPV
                if fn_plus_tn == 0:
                    NPV = 0
                else:
                    NPV = tn / fn_plus_tn * 100

                print('{} precision: {:.4f}  recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
                print('{} sensitivity: {:.4f}  specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
                print('{} FPR: {:.4f}  NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))
                print('{} TP: {}'.format(class_names[cls_idx], tp))
                print('{} TN: {}'.format(class_names[cls_idx], tn))
                print('{} FP: {}'.format(class_names[cls_idx], fp))
                print('{} FN: {}'.format(class_names[cls_idx], fn))
                # attach the records to the tensorboard backend
                if writer is not None:
                    # ...log the running loss
                    writer.add_scalar(phase + '   ' + class_names[cls_idx] + ' precision',
                                      precision,
                                      epoch + 1)
                    writer.add_scalar(phase + '   ' + class_names[cls_idx] + ' recall',
                                      recall,
                                      epoch + 1)

            # json log: update
            json_log[str(epoch + 1)][phase] = log_dict

            if phase == 'val':
                temp_vac = epoch_acc
            else:
                temp_acc = epoch_acc  # not useful actually

            # deep copy the model
            if phase == 'val' and better_performance(temp_acc, temp_vac, best_acc, best_vac) and epoch >= intake_epochs:
                # what is better? we now use the wildly used method only
                best_epoch_idx = epoch + 1
                best_acc = temp_acc
                best_vac = temp_vac
                best_model_wts = copy.deepcopy(model.state_dict())
                best_log_dic = log_dict

            print('\n')

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best epoch idx: ', best_epoch_idx)
    print('Best epoch train Acc: {:4f}'.format(best_acc))
    print('Best epoch val Acc: {:4f}'.format(best_vac))
    for cls_idx in range(len(class_names)):
        tp = best_log_dic[class_names[cls_idx]]['tp']
        tn = best_log_dic[class_names[cls_idx]]['tn']
        fp = best_log_dic[class_names[cls_idx]]['fp']
        fn = best_log_dic[class_names[cls_idx]]['fn']
        tp_plus_fp = tp + fp
        tp_plus_fn = tp + fn
        fp_plus_tn = fp + tn
        fn_plus_tn = fn + tn

        # precision
        if tp_plus_fp == 0:
            precision = 0
        else:
            precision = float(tp) / tp_plus_fp * 100
        # recall
        if tp_plus_fn == 0:
            recall = 0
        else:
            recall = float(tp) / tp_plus_fn * 100

        # TPR (sensitivity)
        TPR = recall

        # TNR (specificity)
        # FPR
        if fp_plus_tn == 0:
            TNR = 0
            FPR = 0
        else:
            TNR = tn / fp_plus_tn * 100
            FPR = fp / fp_plus_tn * 100

        # NPV
        if fn_plus_tn == 0:
            NPV = 0
        else:
            NPV = tn / fn_plus_tn * 100

        print('{} precision: {:.4f}  recall: {:.4f}'.format(class_names[cls_idx], precision, recall))
        print('{} sensitivity: {:.4f}  specificity: {:.4f}'.format(class_names[cls_idx], TPR, TNR))
        print('{} FPR: {:.4f}  NPV: {:.4f}'.format(class_names[cls_idx], FPR, NPV))

    # attach the records to the tensorboard backend
    if writer is not None:
        writer.close()

    # load best model weights as final model training result
    model.load_state_dict(best_model_wts)
    # save json_log  indent=2 for better view
    json.dump(json_log, open(os.path.join(draw_path, model_idx + '_log.json'), 'w'), ensure_ascii=False, indent=2)
    return model


def main(args):
    if args.paint:
        # use Agg kernal, not painting in the front-desk
        import matplotlib
        matplotlib.use('Agg')

    enable_tensorboard = args.enable_tensorboard  # True
    enable_attention_check = args.enable_attention_check  # False   'CAM' 'SAA'
    enable_visualize_check = args.enable_visualize_check  # False

    enable_sam = args.enable_sam  # False

    data_augmentation_mode = args.data_augmentation_mode  # 0

    linearprobing = args.linearprobing  # False

    Pre_Trained_model_path = args.Pre_Trained_model_path  # None
    Prompt_state_path = args.Prompt_state_path  # None

    # Prompt
    PromptTuning = args.PromptTuning  # None  "Deep" / "Shallow"
    Prompt_Token_num = args.Prompt_Token_num  # 20
    PromptUnFreeze = args.PromptUnFreeze  # False

    gpu_idx = args.gpu_idx  # GPU idx start with0, -1 to use multipel GPU

    # model info
    model_idx = args.model_idx  # the model we are going to use. by the format of Model_size_other_info
    # structural parameter
    drop_rate = args.drop_rate
    attn_drop_rate = args.attn_drop_rate
    drop_path_rate = args.drop_path_rate
    use_cls_token = False if args.cls_token_off else True
    use_pos_embedding = False if args.pos_embedding_off else True
    use_att_module = None if args.att_module == 'None' else args.att_module

    # pretrained_backbone
    pretrained_backbone = False if args.backbone_PT_off else True

    # classification required number of your dataset
    num_classes = args.num_classes  # default 0 for auto-fit
    # image size for the input image
    edge_size = args.edge_size  # 224 384 1000

    # batch info
    batch_size = args.batch_size  # 8
    num_workers = args.num_workers  # main training num_workers 4

    num_epochs = args.num_epochs  # 50
    intake_epochs = args.intake_epochs  # 0
    check_minibatch = args.check_minibatch if args.check_minibatch is not None else 400 // batch_size

    lr = args.lr  # 0.000007
    lrf = args.lrf  # 0.0

    opt_name = args.opt_name  # 'Adam'

    # PATH info
    draw_root = args.draw_root
    model_path = args.model_path
    dataroot = args.dataroot

    draw_path = os.path.join(draw_root, 'CLS_' + model_idx)  # CLS_ is for the CLS training, MIL will be MIL training
    save_model_path = os.path.join(model_path, 'CLS_' + model_idx + '.pth')

    if not os.path.exists(model_path):
        os.makedirs(model_path)

    if os.path.exists(draw_path):
        del_file(draw_path)  # fixme clear the output folder, NOTICE this may be DANGEROUS
    else:
        os.makedirs(draw_path)

    # Train Augmentation
    augmentation_name = args.augmentation_name  # None

    # Data Augmentation
    data_transforms = data_augmentation(data_augmentation_mode, edge_size=edge_size)

    datasets = {x: torchvision.datasets.ImageFolder(os.path.join(dataroot, x), data_transforms[x]) for x in
                ['train', 'val']}  # 2 dataset obj is prepared here and combine together
    dataset_sizes = {x: len(datasets[x]) for x in ['train', 'val']}  # size of each dataset

    dataloaders = {'train': torch.utils.data.DataLoader(datasets['train'], batch_size=batch_size, shuffle=True,
                                                        num_workers=num_workers, drop_last=True),  # colab suggest 2
                   'val': torch.utils.data.DataLoader(datasets['val'], batch_size=batch_size, shuffle=False,
                                                      num_workers=num_workers // 4 + 1, drop_last=True)
                   }

    class_names = [d.name for d in os.scandir(os.path.join(dataroot, 'train')) if d.is_dir()]
    class_names.sort()
    if num_classes == 0:
        print("class_names:", class_names)
        num_classes = len(class_names)
    else:
        if len(class_names) == num_classes:
            print("class_names:", class_names)
        else:
            print('classfication number of the model mismatch the dataset requirement of:', len(class_names))
            return -1

    print("*********************************{}*************************************".format('setting'))
    print(args)

    # start tensorboard backend
    if enable_tensorboard:
        writer = SummaryWriter(draw_path)
    else:
        writer = None
    # if u run locally
    # nohup tensorboard --logdir=/home/MSHT/runs --host=0.0.0.0 --port=7777 &
    # tensorboard --logdir=/home/ZTY/runs --host=0.0.0.0 --port=7777

    if gpu_idx == -1:  # use all cards
        if torch.cuda.device_count() > 1:
            print("Use", torch.cuda.device_count(), "GPUs!")
            # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
            gpu_use = gpu_idx
        else:
            print('we dont have more GPU idx here, try to use gpu_idx=0')
            try:
                os.environ['CUDA_VISIBLE_DEVICES'] = '0'  # setting k for: only card idx k is sighted for this code
                gpu_use = 0
            except:
                print("GPU distributing ERRO occur use CPU instead")
                gpu_use = 'cpu'

    else:
        # Decide which device we want to run on
        try:
            # setting k for: only card idx k is sighted for this code
            os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_idx)
            gpu_use = gpu_idx
        except:
            print('we dont have that GPU idx here, try to use gpu_idx=0')
            try:
                # setting 0 for: only card idx 0 is sighted for this code
                os.environ['CUDA_VISIBLE_DEVICES'] = '0'
                gpu_use = 0
            except:
                print("GPU distributing ERRO occur use CPU instead")
                gpu_use = 'cpu'

    # device environment
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # get model
    if PromptTuning is not None:
        print('PromptTuning of ', model_idx)
        print('Prompt VPT type:', PromptTuning)

        # initialize the model backbone:
        if Pre_Trained_model_path is None or Pre_Trained_model_path == 'timm':
            base_state_dict = 'timm'
            print('backbone base_state_dict of timm')
        elif Pre_Trained_model_path is not None and os.path.exists(Pre_Trained_model_path):
            print('backbone base_state_dict at: ', Pre_Trained_model_path)
            base_state_dict = torch.load(Pre_Trained_model_path)
        else:
            print('invalid Pre_Trained_model_path for prompting at: ', Pre_Trained_model_path)
            raise

        # put the additional prompt tokens to model:
        if Prompt_state_path is None:
            prompt_state_dict = None
            print('prompting with empty prompt_state:  prompt_state of None')
        elif Prompt_state_path is not None and os.path.exists(Prompt_state_path):
            print('prompting with prompt_state at: ', Prompt_state_path)
            prompt_state_dict = torch.load(Prompt_state_path)
        else:
            print('invalid prompt_state_dict for prompting, path at:', Prompt_state_path)
            raise

        model = build_promptmodel(num_classes, edge_size, model_idx, Prompt_Token_num=Prompt_Token_num,
                                  VPT_type=PromptTuning, prompt_state_dict=prompt_state_dict,
                                  base_state_dict=base_state_dict)
        # Use FineTuning with prompt tokens (when PromptUnFreeze==True)
        if PromptUnFreeze:
            model.UnFreeze()
            print('prompt tuning with all parameaters un-freezed')

    else:
        # get model: randomly initiate model, except the backbone CNN(when pretrained_backbone is True)
        model = get_model(num_classes, edge_size, model_idx, drop_rate, attn_drop_rate, drop_path_rate,
                          pretrained_backbone, use_cls_token, use_pos_embedding, use_att_module)

        # Manually get the model pretrained on the Imagenet1000
        if Pre_Trained_model_path is not None:
            if os.path.exists(Pre_Trained_model_path):
                state_dict = FixStateDict(torch.load(Pre_Trained_model_path), remove_key_head='head')
                model.load_state_dict(state_dict, False)
                print('Specified backbone model weight loaded:', Pre_Trained_model_path)
            else:
                print('Specified Pre_Trained_model_path:' + Pre_Trained_model_path, ' is NOT avaliable!!!!\n')
                raise
        else:
            print('building model (no-prompt) with pretrained_backbone status:',pretrained_backbone)
            if pretrained_backbone is True:
                print('timm loaded')

        if linearprobing:
            # Only tuning the last FC layer for CLS task
            module_all = 0
            for child in model.children():  # find all nn.modules
                module_all += 1

            for param in model.parameters():  # freeze all parameters
                param.requires_grad = False

            for module_idx, child in enumerate(model.children()):
                if module_idx == module_all:  # Unfreeze the parameters of the last FC layer
                    for param in child.parameters():
                        param.requires_grad = True

    print('GPU:', gpu_use)

    if gpu_use == -1:
        model = nn.DataParallel(model)

    model.to(device)

    try:
        summary(model, input_size=(3, edge_size, edge_size))  # should be after .to(device)
    except:
        pass

    print("model :", model_idx)

    # Augmentation
    Augmentation = get_online_augmentation(augmentation_name, p=0.5, class_num=num_classes,
                                           batch_size=batch_size, edge_size=edge_size, device=device)

    if augmentation_name != 'CellMix-Split' and augmentation_name != 'CellMix-Group' \
            and augmentation_name != 'CellMix-Random':
        fix_position_ratio_scheduler = None
        puzzle_patch_size_scheduler = None
    else:
        # setting puzzle_patch_size and fix_position_ratio schedulers
        fix_position_ratio_scheduler = ratio_scheduler(total_epoches=num_epochs,
                                                       warmup_epochs=0,
                                                       basic_ratio=0.5,
                                                       strategy=args.ratio_strategy,  # 'linear'
                                                       fix_position_ratio=args.fix_position_ratio,
                                                       threshold=args.loss_drive_threshold)

        puzzle_patch_size_scheduler = patch_scheduler(total_epoches=num_epochs,
                                                      warmup_epochs=0,
                                                      edge_size=edge_size,
                                                      basic_patch=16,
                                                      strategy=args.patch_strategy,  # 'random', 'linear' or 'loop'
                                                      threshold=args.loss_drive_threshold,
                                                      fix_patch_size=args.fix_patch_size,  # 16,32,48,64,96,128,192
                                                      patch_size_jump=args.patch_size_jump)  # 'odd' or 'even'

    # Default cross entrphy of one-hot outputs: [B,CLS] and idx label [B] long tensor
    # augmentation loss is SoftlabelCrossEntropy
    criterion = SoftlabelCrossEntropy() \
        if Augmentation is not None and augmentation_name != 'Cutout' else nn.CrossEntropyLoss()

    if opt_name == 'SGD':
        optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.8, weight_decay=0.005)
        scheduler = lr_scheduler.StepLR(optimizer, step_size=20, gamma=0.5)  # 15 0.1  default SGD StepLR scheduler
    elif opt_name == 'Adam':
        optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.01)
        scheduler = None
    else:
        print('no optimizer')
        raise

    if enable_sam:
        from utils.sam import SAM

        if opt_name == 'SGD':
            base_optimizer = torch.optim.SGD  # define an optimizer for the "sharpness-aware" update
            optimizer = SAM(model.parameters(), base_optimizer, lr=lr, momentum=0.8)
            scheduler = None
        elif opt_name == 'Adam':
            base_optimizer = torch.optim.Adam  # define an optimizer for the "sharpness-aware" update
            optimizer = SAM(model.parameters(), base_optimizer, lr=lr, weight_decay=0.01)
        else:
            print('no optimizer')
            raise

    if lrf > 0:  # use cosine learning rate schedule
        import math
        # cosine Scheduler by https://arxiv.org/pdf/1812.01187.pdf
        lf = lambda x: ((1 + math.cos(x * math.pi / num_epochs)) / 2) * (1 - lrf) + lrf  # cosine
        scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)

    # train
    model_ft = train_model(model, dataloaders, criterion, optimizer, class_names, dataset_sizes,
                           fix_position_ratio_scheduler=fix_position_ratio_scheduler,
                           puzzle_patch_size_scheduler=puzzle_patch_size_scheduler,
                           Augmentation=Augmentation,
                           edge_size=edge_size, model_idx=model_idx, num_epochs=num_epochs,
                           intake_epochs=intake_epochs, check_minibatch=check_minibatch,
                           scheduler=scheduler, device=device, draw_path=draw_path,
                           enable_attention_check=enable_attention_check,
                           enable_visualize_check=enable_visualize_check,
                           enable_sam=enable_sam, writer=writer)

    # save model if its a multi-GPU model, save as a single GPU one too
    if gpu_use == -1:

        if PromptTuning is None:
            torch.save(model_ft.module.state_dict(), save_model_path)

        else:
            if PromptUnFreeze:
                torch.save(model_ft.module.state_dict(), save_model_path)
            else:
                prompt_state_dict = model_ft.module.obtain_prompt()
                # fixme maybe bug at DP module.obtain_prompt, just model.obtain_prompt is enough
                torch.save(prompt_state_dict, save_model_path)

        print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)

    else:
        if PromptTuning is None:
            torch.save(model_ft.state_dict(), save_model_path)

        else:
            if PromptUnFreeze:
                torch.save(model_ft.state_dict(), save_model_path)
            else:
                prompt_state_dict = model_ft.obtain_prompt()
                torch.save(prompt_state_dict, save_model_path)

        print('model trained by GPU (idx:' + str(gpu_use) + ') has been saved at ', save_model_path)


def get_args_parser():
    parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')

    # Model Name or index
    parser.add_argument('--model_idx', default='Hybrid2_384_401_testsample', type=str, help='Model Name or index')
    # drop_rate, attn_drop_rate, drop_path_rate
    parser.add_argument('--drop_rate', default=0.0, type=float, help='dropout rate , default 0.0')
    parser.add_argument('--attn_drop_rate', default=0.0, type=float, help='dropout rate Aftter Attention, default 0.0')
    parser.add_argument('--drop_path_rate', default=0.0, type=float, help='drop path for stochastic depth, default 0.0')

    # Abalation Studies
    parser.add_argument('--cls_token_off', action='store_true', help='use cls_token in model structure')
    parser.add_argument('--pos_embedding_off', action='store_true', help='use pos_embedding in model structure')
    # 'SimAM', 'CBAM', 'SE' 'None'
    parser.add_argument('--att_module', default='SimAM', type=str, help='use which att_module in model structure')

    # backbone_PT_off  by default is false, in default setting the backbone weight is required
    parser.add_argument('--backbone_PT_off', action='store_true', help='use a freash backbone weight in training')

    # Enviroment parameters
    parser.add_argument('--gpu_idx', default=-1, type=int,
                        help='use a single GPU with its index, -1 to use multiple GPU')

    # Path parameters
    parser.add_argument('--dataroot', default='/data/MIL_Experiment/dataset/ROSE_CLS',
                        help='path to dataset')
    parser.add_argument('--model_path', default='/home/pancreatic-cancer-project/saved_models',
                        help='path to save model state-dict')
    parser.add_argument('--draw_root', default='/home/pancreatic-cancer-project/runs',
                        help='path to draw and save tensorboard output')

    # Help tool parameters
    parser.add_argument('--paint', action='store_false', help='paint in front desk')  # matplotlib.use('Agg')

    # check tool parameters
    parser.add_argument('--enable_tensorboard', action='store_true', help='enable tensorboard to save status')
    parser.add_argument('--enable_attention_check', action='store_true', help='check and save attention map')
    parser.add_argument('--enable_visualize_check', action='store_true', help='check and save pics')

    # Tuning setting
    # PromptTuning
    parser.add_argument('--PromptTuning', default=None, type=str,
                        help='use Prompt Tuning strategy instead of Finetuning')
    # Prompt_Token_num
    parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')

    # PromptUnFreeze
    parser.add_argument('--PromptUnFreeze', action='store_true', help='prompt tuning with all parameaters un-freezed')

    # linearprobing
    parser.add_argument('--linearprobing', action='store_true', help='use linearprobing tuning')

    # Finetuning a Pretrained model at PATH
    # '/home/MIL_Experiment/saved_models/Hybrid2_384_PreTrain_000.pth'
    parser.add_argument('--Pre_Trained_model_path', default=None, type=str,
                        help='Finetuning a trained model in this dataset')
    # Prompt_state_path
    parser.add_argument('--Prompt_state_path', default=None, type=str,
                        help='Prompt_state_path for prompt tokens')

    # Training status parameters
    # SAM
    parser.add_argument('--enable_sam', action='store_true', help='use SAM strategy in training')

    # Online augmentation_name
    parser.add_argument('--augmentation_name', default=None, type=str, help='Online augmentation name')

    # CellMix ablation: loss_drive strategy
    parser.add_argument('--ratio_strategy', default=None, type=str, help='CellMix ratio scheduler strategy')
    parser.add_argument('--patch_strategy', default=None, type=str, help='CellMix patch scheduler strategy')
    parser.add_argument('--loss_drive_threshold', default=4.0, type=float, help='CellMix loss_drive_threshold')

    # CellMix ablation: fix_patch_size  patch_size_jump
    parser.add_argument('--fix_position_ratio', default=0.5, type=float, help='CellMix ratio scheduler strategy')
    parser.add_argument('--fix_patch_size', default=None, type=int, help='CellMix ablation using fix_patch_size')
    parser.add_argument('--patch_size_jump', default=None, type=str, help='CellMix patch_size_jump strategy')

    # Dataset based parameters
    parser.add_argument('--num_classes', default=0, type=int, help='classification number, default 0 for auto-fit')
    parser.add_argument('--edge_size', default=384, type=int, help='edge size of input image')  # 224 256 384 1000
    # Dataset specific augmentations in dataloader
    parser.add_argument('--data_augmentation_mode', default=0, type=int, help='data_augmentation_mode')

    # Training seting parameters
    parser.add_argument('--batch_size', default=8, type=int, help='Training batch_size default 8')
    parser.add_argument('--num_epochs', default=50, type=int, help='training epochs')
    parser.add_argument('--intake_epochs', default=0, type=int, help='only save model at epochs after intake_epochs')
    parser.add_argument('--lr', default=0.00001, type=float, help='learing rate')
    parser.add_argument('--lrf', type=float, default=0.0,
                        help='learing rate decay rate, default 0(not enabled), suggest 0.1 and lr=0.00005')
    parser.add_argument('--opt_name', default='Adam', type=str, help='optimizer name Adam or SGD')

    # check_minibatch for painting pics
    parser.add_argument('--check_minibatch', default=None, type=int, help='check batch_size')
    parser.add_argument('--num_workers', default=2, type=int, help='use CPU num_workers , default 2 for colab')

    return parser


if __name__ == '__main__':
    # setting up the random seed
    setup_seed(42)

    parser = get_args_parser()
    args = parser.parse_args()
    main(args)