File size: 13,055 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
"""
'JPG_cropping_960...' ver: 23.6.2
this code is used to count the dataset quantity of CPIA-WSI
Crop pathology images into patches Using average filtering to screen the useful pieces which are mostly red/purple
Specially mod ver
maximize the efficient of cropping in different size
"""
import os
os.add_dll_directory(r"D:\chrome_download\github220901\openslide-win64\bin")
# 注意openslide的使用需要这样 另外叫将openslide添加到PATh里面
import openslide
import shutil
import PIL.Image as Image
import numpy as np
import openslide
import torch
from tqdm import tqdm
import cv2
from torchvision import transforms
from PIL import ImageFile
import pandas as pd
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
STANDARD_MPP = 0.4942
patch_size = [(3840, 3840), (960, 960), (384, 384), (96, 96)]
def save_file(f_image, save_dir, suffix='.jpg'):
"""
重命名并保存图片,生成重命名的表
"""
filepath, _ = os.path.split(save_dir)
if not os.path.exists(filepath):
os.makedirs(filepath)
# f_image.save(save_dir + suffix)
image_data = np.asarray(f_image)
cv2.imwrite(save_dir+suffix, image_data)
def make_and_clear_path(file_pack_path):
if not os.path.exists(file_pack_path):
os.makedirs(file_pack_path)
def find_all_files(root, suffix=None):
"""
Return a list of file paths ended with specific suffix
"""
res = []
if type(suffix) is tuple or type(suffix) is list:
for root, _, files in os.walk(root):
for f in files:
if suffix is not None:
status = 0
for i in suffix:
if not f.endswith(i):
pass
else:
status = 1
break
if status == 0:
continue
res.append(os.path.join(root, f))
return res
elif type(suffix) is str or suffix is None:
for root, _, files in os.walk(root):
for f in files:
if suffix is not None and not f.endswith(suffix):
continue
res.append(os.path.join(root, f))
return res
else:
print('type of suffix is not legal :', type(suffix))
return -1
def convert_to_npy(a_data_path, patch_size=(960, 960)):
patch_size = to_2tuple(patch_size)
# 处理转换
# 传回npy
img = Image.open(a_data_path)
w, h = img.size
factor = min(w // patch_size[0], h // patch_size[1])
numpy_img = img.crop([0, 0, factor * patch_size[0], factor * patch_size[1]])
numpy_img = np.array(numpy_img)
return numpy_img
def convert_to_npy_no_opening(patch, patch_size=(960, 960)):
patch_size = to_2tuple(patch_size)
img = patch
w, h = img.size
factor = min(w // patch_size[0], h // patch_size[1])
numpy_img = img.crop([0, 0, factor * patch_size[0], factor * patch_size[1]])
numpy_img = np.array(numpy_img)
return numpy_img
class to_patch:
"""
Split an image into patches, each patch with the size of patch_size
"""
def __init__(self, patch_size=(16, 16)):
patch_size = to_2tuple(patch_size)
self.patch_h = patch_size[0]
self.patch_w = patch_size[1]
def __call__(self, x):
x = torch.tensor(x)
x = x.permute(2, 0, 1)
c, h, w = x.shape
# print(x.shape)
# assert h // self.patch_h == h / self.patch_h and w // self.patch_w == w / self.patch_w
num_patches = (h // self.patch_h) * (w // self.patch_w)
h_1 = (h // self.patch_h) * self.patch_h
w_1 = (w // self.patch_w) * self.patch_w
x = x[:, ((h - h_1) // 2):((h - h_1) // 2 + h_1), ((w - w_1) // 2):((w - w_1) // 2 + w_1)]
# patch encoding
# (c, h, w)
# -> (c, h // self.patch_h, self.patch_h, w // self.patch_w, self.patch_w)
# -> (h // self.patch_h, w // self.patch_w, self.patch_h, self.patch_w, c)
# -> (n_patches, patch_size^2*c)
patches = x.view(
c,
h // self.patch_h,
self.patch_h,
w // self.patch_w,
self.patch_w).permute(1, 3, 2, 4, 0).reshape(num_patches, -1) # it can also used in transformer Encoding
# patch split
# (n_patches, patch_size^2*c)
# -> (num_patches, self.patch_h, self.patch_w, c)
# -> (num_patches, c, self.patch_h, self.patch_w)
patches = patches.view(num_patches,
self.patch_h,
self.patch_w,
c).permute(0, 3, 1, 2)
return patches
def to_2tuple(input):
if type(input) is tuple:
if len(input) == 2:
return input
else:
if len(input) > 2:
output = (input[0], input[1])
return output
elif len(input) == 1:
output = (input[0], input[0])
return output
else:
print('cannot handle none tuple')
else:
if type(input) is list:
if len(input) == 2:
output = (input[0], input[1])
return output
else:
if len(input) > 2:
output = (input[0], input[1])
return output
elif len(input) == 1:
output = (input[0], input[0])
return output
else:
print('cannot handle none list')
elif type(input) is int:
output = (input, input)
return output
else:
print('cannot handle ', type(input))
raise ('cannot handle ', type(input))
def pick_patch(patch):
"""
用于选择合适颜色的图片
:param patch:
:return:
"""
patch = array2img(patch)
img_single = patch.resize((1, 1), Image.ANTIALIAS)
r, g, b = img_single.getpixel((0, 0))
if r - g < 30:
return False
else:
return True
def array2img(patch):
img = Image.fromarray(patch.astype('uint8')).convert('RGB')
return img
def make_name(former_name, patch_size, patch_num):
"""
确保每个名字 都反映原图上的横向x,纵向y,步长为自身patch_size
:param former_name:
:param patch_size:
:return:
"""
former_patch_size = int(former_name.split('-')[-3])
former_x = int(former_name.split('-')[-2])
former_y = int(former_name.split('-')[-1])
img_real_name = former_name[::-1].split('-', 3)[-1][::-1]
ratio = int(former_patch_size / patch_size)
x = patch_num % ratio if patch_num % ratio != 0 else ratio
x = x - 1 # every coordinate starts with 0
x = former_x * ratio + x
y = patch_num // ratio if patch_num % ratio != 0 else patch_num // ratio - 1
y = former_y * ratio + y
img_name = img_real_name + '-' + str(patch_size) + '-' + str(x) + '-' + str(y)
return img_name
def SVS_cut_to_patch(img, save_root,
patch_size,
class_name,
patient_folder=False,
L=True, M=True, S=False):
global num_XL
img_name = os.path.split(img)[1].split('.')[0]
slide = openslide.open_slide(img)
try:
MPP = slide.properties[openslide.PROPERTY_NAME_MPP_X]
resize_ratio = STANDARD_MPP/float(MPP)
if 1.1 > resize_ratio > 0.9:
patch_size_num_0 = patch_size[0][0]
else:
patch_size_num_0 = int(patch_size[0][0] * resize_ratio)
save_root_0 = os.path.join(os.path.join(save_root, str(patch_size[0][0])), class_name + '-' + str(patch_size[0][0]))
make_and_clear_path(save_root_0)
w, h = slide.level_dimensions[0]
for i in range(1, w // patch_size_num_0 - 1):
for j in range(1, h // patch_size_num_0 - 1):
patch = slide.read_region((i * patch_size_num_0, j * patch_size_num_0), 0, (patch_size_num_0, patch_size_num_0))
patch = patch.convert('RGB')
# print('finish id:%d image' % image_list.index(id))
if not 1.1 > resize_ratio > 0.9:
patch = patch.resize(patch_size[0], Image.ANTIALIAS) # resize 到 3840 3840
# 统一归为384*384
# save_file(patch, os.path.join(save_root_0, img_name + '-' + str((i + 1) * (j + 1))))
img_single = patch.resize((1, 1), Image.ANTIALIAS)
r, g, b = img_single.getpixel((0, 0))
if r < 220 and g < 220 and b < 220 and r > 100 and b > 30 and r > g + 20:
num_XL += 1
# save_file(patch, os.path.join(save_root_0, img_name + '-' + str(patch_size[0][0]) + '-' + str(i) + '-' + str(j)))
current_img_name = img_name + '-' + str(patch_size[0][0]) + '-' + str(i) + '-' + str(j)
cut_to_patch(patch, current_img_name, save_root,
patch_size[1], patch_size[2], patch_size[3],
img_name, class_name,
patient_folder=patient_folder,
L=L, M=M, S=S)
else:
continue
except Exception as e:
print(e)
def cut_to_patch(patch,
current_img_name,
save_root,
patch_size_0, patch_size_1, patch_size_2,
img_name, class_name,
patient_folder=True,
L=True, M=True, S=True
):
global num_L, num_M, num_S
current_img_name = current_img_name
numpy_img = convert_to_npy_no_opening(patch)
patch_size_num_0 = patch_size_0[0]
patch_size_num_1 = patch_size_1[0]
patch_size_num_2 = patch_size_2[0]
img_split_0 = to_patch(patch_size_0)
img_patches_0 = img_split_0(numpy_img)
img_split_1 = to_patch(patch_size_1)
img_patches_1 = img_split_1(numpy_img)
i = 0
j = 0
if L:
# on most cases we need L-scale, which is 960 * 960
for patch in img_patches_0:
i = i + 1
patch = patch.permute(1, 2, 0)
patch = patch.numpy()
if pick_patch(patch):
img_name_0 = make_name(current_img_name, patch_size_num_0, i)
num_L += 1
else:
pass
if M:
# on most cases we need M-scale, which is 384 * 384
# if M is false then S must be false
for patch_1 in img_patches_1:
# convert the image into numpy
j = j + 1
patch_1 = patch_1.permute(1, 2, 0)
patch_1 = patch_1.numpy()
if pick_patch(patch_1):
# save 384*384 image
num_M += 1
if S:
k = 0
img_split_2 = to_patch(patch_size_2)
img_patches_2 = img_split_2(patch_1)
for patch_2 in img_patches_2:
k = k + 1
patch_2 = patch_2.permute(1, 2, 0)
patch_2 = patch_2.numpy()
if pick_patch(patch_2):
if k % 10 == 0:
num_S += 1
else:
pass
else:
pass
def read_and_convert(data_root, save_root, suffix=None, L=True, M=True, S=True):
global num_XL, num_L, num_M, num_S
dataset_list = []
# class_names = os.listdir(data_root)
class_names = ['tif']
# 接下来一行代码只在断点续传使用
# class_names = class_names[class_names.index('CPTAC-UCEC') :]
for class_name in class_names:
svs_class_root = os.path.join(data_root, class_name)
svs_all_files = find_all_files(svs_class_root, suffix)
num_XL = 0
num_L = 0
num_M = 0
num_S = 0
for seq in tqdm(range(len(svs_all_files))):
img = svs_all_files[seq]
SVS_cut_to_patch(img, save_root, patch_size, class_name,
patient_folder=True, L=L, M=M, S=S)
print({'dataset_name': str(class_name),
'num_XL': int(num_XL),
'num_L': int(num_L),
'num_M': int(num_M),
'num_S': int(num_S)})
dataset_list.append(
{'dataset_name': str(class_name),
'num_XL': int(num_XL),
'num_L': int(num_L),
'num_M': int(num_M),
'num_S': int(num_S)}
)
print(dataset_list)
if __name__ == '__main__':
read_and_convert(r'F:\MIL_datasets\CAMELYON16\training',
r'X:\CPIA_WSI_no_sampling_no_rezising',
'tif',
L=True, M=True, S=True)
# fixme: X: doesn't take the picture
# fixed use image_data = np.asarray(f_image)
# cv2.imwrite(save_dir+suffix, image_data)
|