File size: 5,475 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
"""
Organize the data to ensure that all data is in jpg format ver: Jan 9th 15:30 official release
"""
import os
import re
import csv
import shutil
import pandas as pd
from PIL import Image
from tqdm import tqdm
import torchvision.transforms
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
def del_file(filepath):
"""
Delete all files and folders in one directory
:param filepath: file path
:return:
"""
del_list = os.listdir(filepath)
for f in del_list:
file_path = os.path.join(filepath, f)
if os.path.isfile(file_path):
os.remove(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
def make_and_clear_path(file_pack_path):
if not os.path.exists(file_pack_path):
os.makedirs(file_pack_path)
del_file(file_pack_path)
def find_all_files(root, suffix=None):
"""
Return a list of file paths ended with specific suffix
"""
res = []
for root, _, files in os.walk(root):
for f in files:
if suffix is not None and not f.endswith(suffix):
continue
res.append(os.path.join(root, f))
return res
def read_file(f_dir):
"""
Read a file and convert it into numpy format
"""
f_image = Image.open(f_dir)
return f_image
def change_shape(image, corp_x=2400, corp_y=1800, f_x=1390, f_y=1038):
"""
Resize the image into x*y
"""
if image.size[0] > corp_x or image.size[1] > corp_y:
# Generate an object of CenterCrop class to crop the image from the center into corp_x*corp_y
crop_obj = torchvision.transforms.CenterCrop((corp_y, corp_x))
image = crop_obj(image)
# print(image.size[0], image.size[1])
image.thumbnail((f_x, f_y), Image.ANTIALIAS)
return image
def save_file(f_image, save_dir, suffix='.jpg'):
"""
Save and rename the images, generate the renamed table
"""
filepath, _ = os.path.split(save_dir)
if not os.path.exists(filepath):
os.makedirs(filepath)
f_image.save(save_dir + suffix)
def PC_to_stander(root_from=r'C:\Users\admin\Desktop\dataset\PC',
root_positive=r'C:\Users\admin\Desktop\jpg_dataset\P',
root_negative=r'C:\Users\admin\Desktop\jpg_dataset\N', corp_x=2400, corp_y=1800, f_x=1390, f_y=1038):
root_target, _ = os.path.split(root_positive)
make_and_clear_path(root_target)
f_dir_list = find_all_files(root=root_from, suffix='.jpg')
# print(f_dir_list)
name_dict = {} # Save the new and old names
old_size_type = []
size_type = [] # Record all different image sizes (after reshape)
for seq in tqdm(range(len(f_dir_list))):
f_dir = f_dir_list[seq]
if '非癌' in f_dir or '阴性' in f_dir or '良性' in f_dir:
root_target = root_negative
else:
root_target = root_positive
f_image = read_file(f_dir)
size = (f_image.size[0], f_image.size[1])
if size not in old_size_type:
old_size_type.append(size)
f_image = change_shape(f_image, corp_x=corp_x, corp_y=corp_y, f_x=f_x, f_y=f_y)
size = (f_image.size[0], f_image.size[1])
if size not in size_type:
size_type.append(size)
save_dir = os.path.join(root_target, str(seq + 1)) # Set save directory
name_dict[save_dir] = f_dir
save_file(f_image, save_dir)
print('old size type:', old_size_type)
print('size type: ', size_type)
root_target, _ = os.path.split(root_positive)
pd.DataFrame.from_dict(name_dict, orient='index', columns=['origin path']).to_csv(
os.path.join(root_target, 'name_dict.csv'))
def trans_csv_folder_to_imagefoder(target_path=r'C:\Users\admin\Desktop\MRAS_SEED_dataset',
original_path=r'C:\Users\admin\Desktop\dataset\MARS_SEED_Dataset\train\train_org_image',
csv_path=r'C:\Users\admin\Desktop\dataset\MARS_SEED_Dataset\train\train_label.csv'):
"""
Original data format: a folder with image inside + a csv file with header which has the name and category of every image.
Process original dataset and get data packet in image folder format
:param target_path: the path of target image folder
:param original_path: The folder with images
:param csv_path: A csv file with header and the name and category of each image
"""
idx = -1
with open(csv_path, "rt", encoding="utf-8") as csvfile:
reader = csv.reader(csvfile)
rows = [row for row in reader]
make_and_clear_path(target_path) # Clear target_path
for row in tqdm(rows):
idx += 1
if idx == 0: # Skip the first header
continue
item_path = os.path.join(original_path, row[0])
if os.path.exists(os.path.join(target_path, row[1])):
shutil.copy(item_path, os.path.join(target_path, row[1]))
else:
os.makedirs(os.path.join(target_path, row[1]))
shutil.copy(item_path, os.path.join(target_path, row[1]))
print('total num:', idx)
if __name__ == '__main__':
PC_to_stander(root_from=r'../Desktop/ROSE_2112',
root_positive=r'../Desktop/jpg_dataset/Positive',
root_negative=r'../Desktop/jpg_dataset/Negative', corp_x=5280, corp_y=3956, f_x=1390,
f_y=1038)
|