File size: 52,158 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
"""
Experimental Script Generator Script ver: Oct 5th 16:30
for linux servers
todo fix train and test alternatively
"""
import argparse
import os.path
def zero_trans_mystrlr_to_float(in_str):
# EG: '305' -> 0.0005
front = '0.'
num_of_zero = int(in_str[0])
end = in_str[-1]
for i in range(num_of_zero):
front = front + '0'
front = front + end
out_float = float(front)
return out_float
def zero_trans_floatlr_to_mystrlr(in_float):
# EG: 0.0005 -> '305'
in_string = "%.20f" % in_float
zero_counts = 0
for i in range(len(in_string) - 2):
# print(string[i+2])
if in_string[i + 2] == '0':
zero_counts += 1
else:
cut = i
break
trans_output = str(zero_counts) + '0' + in_string[(cut + 2):]
last_zeros = 0
for i in trans_output[::-1]:
if i == '0':
last_zeros += 1
else:
break
trans_output = trans_output[0:0 - last_zeros]
return trans_output
def remove_nohup_ignoring_input_at_first_line(directory='./'):
"""
read the .sh files at the directory, remove the first line if it's 'nohup: ignoring input\n'
"""
for root, _, files in os.walk(directory):
for file_name in files:
if file_name.endswith(".sh"):
file_path = os.path.join(root, file_name)
with open(file_path, 'r') as file:
lines = file.readlines()
# print(lines)
modified_lines = [line for line in lines if line != "nohup: ignoring input\n"]
with open(file_path, 'w') as file:
file.writelines(modified_lines)
print('file_path:', file_path, 'has been cleaned')
def concatenate_the_lines_from_several_files(directory='./', cat_file='0.sh'):
cat_file_path = os.path.join(directory, cat_file)
all_lines = ["#!/bin/sh\n", ]
for root, _, files in os.walk(directory):
for file_name in files:
if file_name.endswith(".sh"):
file_path = os.path.join(root, file_name)
with open(file_path, 'r') as file:
lines = file.readlines()
# print(lines)
modified_lines = [line for line in lines if line != "#!/bin/sh\n"]
all_lines.extend(modified_lines)
print('file_path:', file_path, 'has taken')
with open(cat_file_path, 'w') as file:
file.writelines(all_lines)
def print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_Token_num=20,
Prompt_input=False):
Pre_Trained_model_path = os.path.join(Pre_Trained_model_path_PATH, model_weight_name)
VPT_backbone_model_path = os.path.join(Pre_Trained_model_path_PATH, 'ViT_b16_224_Imagenet.pth')
if not Prompt_input:
# send a ViT model inside and then do the ViT + finetuning;
# In VPT versions: we build VPT backbone with the ViT weight, then do finetuning and prompting
# ViT + finetuning
print(
'python Train.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --model_idx ViT_base_' + model_weight_idx + '_'
+ lr_mystr + '_lf' + lrf_mystr + '_finetuning_' + dataset_name + '_CLS --dataroot ' + str(dataroot)
+ ' --draw_root ' + draw_root + ' --Pre_Trained_model_path ' + Pre_Trained_model_path
+ ' --model_path ' + save_model_PATH)
print(
'python Test.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --model_idx ViT_base_' + model_weight_idx + '_' + lr_mystr + '_lf' + lrf_mystr + '_finetuning_'
+ dataset_name + '_CLS --dataroot ' + str(dataroot) + ' --draw_root ' + draw_root + ' --model_path '
+ save_model_PATH)
# VPT + prompting
print(
'python Train.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --model_idx ViT_base_' + model_weight_idx
+ '_PromptDeep_' + str(Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr + '_prompting_' + dataset_name
+ '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(Prompt_Token_num) + ' --dataroot ' + str(
dataroot) + ' --draw_root ' + draw_root
+ ' --Pre_Trained_model_path ' + Pre_Trained_model_path + ' --model_path ' + save_model_PATH)
print(
'python Test.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --model_idx ViT_base_' + model_weight_idx + '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr
+ '_prompting_' + dataset_name + '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --dataroot ' + str(dataroot) + ' --draw_root '
+ draw_root + ' --Pre_Trained_model_path ' + Pre_Trained_model_path + ' --model_path ' + save_model_PATH)
# VPT + finetuning
print(
'python Train.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --model_idx ViT_base_' + model_weight_idx
+ '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr + '_finetuning_' + dataset_name
+ '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --PromptUnFreeze --dataroot ' + str(dataroot) + ' --draw_root ' + draw_root
+ ' --Pre_Trained_model_path ' + Pre_Trained_model_path + ' --model_path ' + save_model_PATH)
print(
'python Test.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --model_idx ViT_base_' + model_weight_idx + '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr
+ '_finetuning_' + dataset_name + '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --PromptUnFreeze --dataroot ' + str(dataroot)
+ ' --draw_root ' + draw_root + ' --model_path ' + save_model_PATH)
else:
# send a VPT prompt state inside to build the prompt tokens
# we build VPT backbone with the ViT-timm weight, then do finetuning and prompting
# fixme notice here Pre_Trained_model_path is actually the trained prompt state path
# VPT + prompting
print(
'python Train.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --model_idx ViT_base_' + model_weight_idx
+ '_PromptDeep_' + str(Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr + '_prompting_' + dataset_name
+ '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(Prompt_Token_num) + ' --dataroot ' + str(
dataroot) + ' --draw_root ' + draw_root
+ ' --Pre_Trained_model_path ' + VPT_backbone_model_path + ' --Prompt_state_path ' + Pre_Trained_model_path + ' --model_path ' + save_model_PATH)
print(
'python Test.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --model_idx ViT_base_' + model_weight_idx + '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr
+ '_prompting_' + dataset_name + '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --dataroot ' + str(dataroot) + ' --draw_root '
+ draw_root + ' --Pre_Trained_model_path ' + VPT_backbone_model_path + ' --model_path ' + save_model_PATH)
# VPT + finetuning
print(
'python Train.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --model_idx ViT_base_' + model_weight_idx
+ '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr + '_finetuning_' + dataset_name
+ '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --PromptUnFreeze --dataroot ' + str(dataroot) + ' --draw_root ' + draw_root
+ ' --Pre_Trained_model_path ' + VPT_backbone_model_path + ' --Prompt_state_path ' + Pre_Trained_model_path + ' --model_path ' + save_model_PATH)
print(
'python Test.py --gpu_idx ' + GPU_idx + ' --edge_size 224 --data_augmentation_mode ' + data_augmentation_mode
+ ' --model_idx ViT_base_' + model_weight_idx + '_PromptDeep_' + str(
Prompt_Token_num) + '_' + lr_mystr + '_lf' + lrf_mystr
+ '_finetuning_' + dataset_name + '_CLS --PromptTuning Deep --Prompt_Token_num ' + str(
Prompt_Token_num) + ' --PromptUnFreeze --dataroot ' + str(dataroot)
+ ' --draw_root ' + draw_root + ' --model_path ' + save_model_PATH)
print('')
def write_PuzzleTuning_comparison_script(lr_mystr, lrf_mystr, data_augmentation_mode, dataset_name, GPU_idx='0'):
"""
In PuzzleTuning comparison experiments we put
datasets at: --dataroot /root/autodl-tmp/datasets
Pre_Trained_model_path /root/autodl-tmp/pre_trained_models # output_models (not applicable for comparison)
Prompt_state_path (not applicable for comparison) /root/autodl-tmp/output_models
save the training model at: model_path /root/autodl-tmp/saved_models
draw_root /root/autodl-tmp/PuzzleTuning_Comparison/[*lr*_*lrf*_*dataset_name*]
"""
dataroot_PATH = '/root/autodl-tmp/datasets'
Pre_Trained_model_path_PATH = '/root/autodl-tmp/pre_trained_models'
save_model_PATH = '/root/autodl-tmp/saved_models'
draw_root_PATH = '/root/autodl-tmp/PuzzleTuning_Comparison'
data_augmentation_mode = str(data_augmentation_mode)
GPU_idx = str(GPU_idx)
lr = str(zero_trans_mystrlr_to_float(lr_mystr))
lrf = '0.' + str(lrf_mystr)
experiment_idx = lr_mystr + '_lf' + lrf_mystr + '_' + dataset_name
dataroot = os.path.join(dataroot_PATH, dataset_name + '_CLS')
draw_root = os.path.join(draw_root_PATH, experiment_idx)
# PuzzleTuning official version:
# we pre-trained VPT prompt tokens, and use the timm ViT as backbone
print('#SAE-timm-start_promptstate') # SAE+VPT start with timm
model_weight_idx = 'ViT_base_timm_PuzzleTuning_SAE_E_199_promptstate'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
# Comparison methods:
# For the comparison methods: we trained ViT, so we use ViT + ft first,
# and then, put it as vpt 's backbone in prompting and VPT finetuning.
print('#空白对比')
model_weight_idx = 'random'
model_weight_name = 'ViT_b16_224_Random_Init.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#timm对比')
model_weight_idx = 'timm'
model_weight_name = 'ViT_b16_224_Imagenet.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#MAEImageNet对比')
model_weight_idx = 'MAEImageNet'
model_weight_name = 'ViT_b16_224_MAEImageNet_Init.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#mae对比')
model_weight_idx = 'timm_mae_CPIAm_E100'
model_weight_name = 'ViT_b16_224_timm_mae_ALL_100.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#moco对比')
model_weight_idx = 'timm_moco_CPIAm_E100'
model_weight_name = 'ViT_b16_224_timm_moco_ALL_100.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#dino对比')
model_weight_idx = 'timm_dino_CPIAm_E100'
model_weight_name = 'ViT_b16_224_timm_dino_ALL_100.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#BYOL对比')
model_weight_idx = 'timm_BYOL_CPIAm_E50'
model_weight_name = 'ViT_b16_224_timm_BYOL_ALL_50.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#GCMAE对比')
model_weight_idx = 'timm_GCMAE_CPIAm_E80'
model_weight_name = 'ViT_b16_224_timm_GCMAE_ALL_80.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#SDMAE对比')
model_weight_idx = 'timm_SDMAE_CPIAm_E80'
model_weight_name = 'ViT_b16_224_timm_SDMAE_ALL_80.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#SIMMIM对比')
model_weight_idx = 'timm_SIMMIM_CPIAm_E200'
model_weight_name = 'ViT_b16_224_timm_SIMMIM_ALL_200.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#SIMCLR对比')
model_weight_idx = 'timm_SIMCLR_CPIAm_E100'
model_weight_name = 'ViT_b16_224_timm_SIMCLR_ALL_100.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
# Ablation versions:
# For ablation SAE-ViT version, we pre-trained ViT, so we use ViT + ft first,
# and then, put it as vpt 's backbone in prompting and VPT finetuning.
print('#PuzzleTuning_SAE_ViT-CPIA对比')
model_weight_idx = 'timm_PuzzleTuning_SAE_E_199'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#SAE_fixp16fixr25-timm-start') # SAE_fixp16fixr25+ViT start with timm
model_weight_idx = 'ViT_base_timm_PuzzleTuning_SAE_fixp16fixr25_E_199'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_E_199.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
print('#SAE_fixp16ratiodecay-timm-start') # SAE_fixp16ratiodecay+ViT start with timm
model_weight_idx = 'ViT_base_timm_PuzzleTuning_SAE_fixp16ratiodecay_E_199'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_E_199.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=False)
# For ablation SAE-VPT version, we pre-trained VPT prompt tokens, and use the timm ViT as backbone
print('#MAE-VPT_promptstate') # MAE+VPT
model_weight_idx = 'timm_mae_Prompt_CPIAm_E199_promptstate'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
print('#SAE-MAE-start_promptstate') # SAE+VPT start with MAEImageNet
model_weight_idx = 'ViT_base_MAEImageNet_PuzzleTuning_SAE_E_199_promptstate'
model_weight_name = 'ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
print('#SAE-Random-start_promptstate') # SAE+VPT start with Random
model_weight_idx = 'ViT_base_Random_PuzzleTuning_SAE_E_199_promptstate'
model_weight_name = 'ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
print('#SAE_fixp16fixr25-timm-start_promptstate') # SAE_fixp16fixr25+VPT start with timm
model_weight_idx = 'ViT_base_timm_PuzzleTuning_SAE_fixp16fixr25_E_199_promptstate'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
print('#SAE_fixp16ratiodecay-timm-start_promptstate') # SAE_fixp16ratiodecay+VPT start with timm
model_weight_idx = 'ViT_base_timm_PuzzleTuning_SAE_fixp16ratiodecay_E_199_promptstate'
model_weight_name = 'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=True)
print('')
print('cd /home/pancreatic-cancer-diagnosis-tansformer/code/utils')
record_dir = os.path.join(draw_root, 'CSV_logs')
print('python check_log_json.py --enable_notify --draw_root ' + draw_root + ' --record_dir ' + record_dir)
print('cd /home/pancreatic-cancer-diagnosis-tansformer/code')
def write_additional_PuzzleTuning_comparison_script(add_idx, lr_mystr, lrf_mystr, data_augmentation_mode, dataset_name,
model_weight_idx='timm_mae_CPIAm_E100',
model_weight_name='ViT_b16_224_timm_mae_ALL_100.pth',
GPU_idx='0', Prompt_input=False):
"""
In PuzzleTuning comparison experiments we put
datasets at: --dataroot /root/autodl-tmp/datasets
Pre_Trained_model_path /root/autodl-tmp/pre_trained_models # output_models (not applicable for comparison)
Prompt_state_path (not applicable for comparison) /root/autodl-tmp/output_models
save the training model at: model_path /root/autodl-tmp/saved_models
draw_root /root/autodl-tmp/PuzzleTuning_Comparison/[*lr*_*lrf*_*dataset_name*]
# fixme the additional experiments settings need to manually set!!!
in the additional experiments, we save the runs to
draw_root /root/autodl-tmp/runs/[*lr*_*lrf*_*dataset_name*]
and then copy a duplicates to /root/autodl-tmp/PuzzleTuning_Comparison/[*lr*_*lrf*_*dataset_name*]
"""
dataroot_PATH = '/root/autodl-tmp/datasets'
Pre_Trained_model_path_PATH = '/root/autodl-tmp/pre_trained_models'
save_model_PATH = '/root/autodl-tmp/saved_models'
draw_root_PATH = '/root/autodl-tmp/runs'
copy_to_draw_root_PATH = '/root/autodl-tmp/PuzzleTuning_Comparison'
data_augmentation_mode = str(data_augmentation_mode)
GPU_idx = str(GPU_idx)
lr = str(zero_trans_mystrlr_to_float(lr_mystr))
lrf = '0.' + str(lrf_mystr)
experiment_idx = lr_mystr + '_lf' + lrf_mystr + '_' + dataset_name
add_experiment_idx = add_idx + '_' + lr_mystr + '_lf' + lrf_mystr + '_' + dataset_name
dataroot = os.path.join(dataroot_PATH, dataset_name + '_CLS')
# additional exp runs path
draw_root = os.path.join(draw_root_PATH, add_experiment_idx)
# basic all exp runs path
copy_draw_root = os.path.join(copy_to_draw_root_PATH, experiment_idx)
print('# Additional ' + add_idx)
print_a_PuzzleTuning_comparison_script(model_weight_idx, model_weight_name, lr, lrf, lr_mystr, lrf_mystr,
dataset_name, dataroot, draw_root, Pre_Trained_model_path_PATH,
save_model_PATH, data_augmentation_mode, GPU_idx, Prompt_input=Prompt_input)
print('')
print('cd /home/pancreatic-cancer-diagnosis-tansformer/code/utils')
# update the total record
print('')
print('cp -r ' + draw_root + '/*' + ' ' + copy_draw_root)
record_dir = os.path.join(copy_draw_root, 'CSV_logs')
print('python check_log_json.py --draw_root ' + copy_draw_root + ' --record_dir ' + record_dir)
# update the additional runs and send to notify
record_dir = os.path.join(draw_root, add_experiment_idx)
print('python check_log_json.py --enable_notify --draw_root ' + draw_root + ' --record_dir ' + record_dir)
print('cd /home/pancreatic-cancer-diagnosis-tansformer/code')
def write_CLS_script(model_idxs, data_augmentation_mode, edge_size, batch_size, lr, lrf, enable_tensorboard,
test_enable_attention_check, dataset_name, dataroot, model_path, draw_root):
data_augmentation_mode = str(data_augmentation_mode)
edge_size_ipt = str(edge_size)
batch_size = str(batch_size)
lr_name = zero_trans_floatlr_to_mystrlr(lr)
lr = str(lr)
lf_name = str(int(100 * lrf))
lrf = str(lrf)
dataroot = dataroot + dataset_name + '_CLS'
for model_idx in model_idxs:
# alter the edge size for certain models
if model_idx in ['cross_former', 'convit', 'visformer', 'ViT_h']:
edge_size = '224'
else:
edge_size = edge_size_ipt
if enable_tensorboard is True:
print('python Train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_CLS --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --batch_size ' + batch_size +
' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --dataroot ' + dataroot +
' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
else:
print('python Train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_CLS --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --batch_size ' + batch_size +
' --lr ' + lr + ' --lrf ' + lrf + ' --dataroot ' + dataroot +
' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
for model_idx in model_idxs:
# alter the edge size for certain models
if model_idx in ['cross_former', 'convit', 'visformer', 'ViT_h']:
edge_size = '224'
else:
edge_size = edge_size_ipt
if test_enable_attention_check is True:
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_CLS --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --enable_attention_check --dataroot '
+ dataroot + ' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
else:
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_CLS --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --dataroot '
+ dataroot + ' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
def write_CLS_AUG_script(model_idx, augmentation_names, data_augmentation_mode, edge_size, batch_size, lr, lrf,
test_enable_attention_check, enable_tensorboard, dataset_name, dataroot, model_path,
draw_root):
data_augmentation_mode = str(data_augmentation_mode)
data_augmentation_mode = str(data_augmentation_mode)
edge_size = str(edge_size)
batch_size = str(batch_size)
lr_name = zero_trans_floatlr_to_mystrlr(lr)
lr = str(lr)
lf_name = str(int(100 * lrf))
lrf = str(lrf)
dataroot = dataroot + dataset_name + '_CLS'
for augmentation_name in augmentation_names:
if enable_tensorboard is True:
print('python Train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_' + augmentation_name + '_CLS' +
' --augmentation_name ' + augmentation_name + ' --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --batch_size ' + batch_size +
' --lr ' + lr + ' --lrf ' + lrf + ' --enable_tensorboard --dataroot ' + dataroot +
' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
else:
print('python Train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_' + augmentation_name + '_CLS' +
' --augmentation_name ' + augmentation_name + ' --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode + ' --batch_size ' + batch_size +
' --lr ' + lr + ' --lrf ' + lrf + ' --dataroot ' + dataroot +
' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
for augmentation_name in augmentation_names:
if test_enable_attention_check is True:
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_' + augmentation_name + '_CLS' +
' --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode +
' --enable_attention_check --dataroot ' + dataroot + ' --model_path ' + model_path +
' --draw_root ' + draw_root)
print('')
else:
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_' + dataset_name + '_' + augmentation_name + '_CLS' +
' --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode + ' --dataroot '
+ dataroot + ' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
def write_MIL_script(model_idxs, data_augmentation_mode, edge_size, batch_size, patch_size, lr, lrf, enable_tensorboard,
test_enable_attention_check, dataset_name, dataroot, model_path, draw_root, imaging_root=None):
# imaging_root 是放画图的检查的路径,可以和draw一样
if imaging_root == None:
imaging_root = draw_root
data_augmentation_mode = str(data_augmentation_mode)
edge_size = str(edge_size)
batch_size = str(batch_size)
patch_size = str(patch_size)
lr_name = zero_trans_floatlr_to_mystrlr(lr)
lr = str(lr)
lf_name = str(int(100 * lrf))
lrf = str(lrf)
dataroot = dataroot + dataset_name + '_MIL'
CLS_dataroot = dataroot + dataset_name + '_CLS'
for model_idx in model_idxs:
if enable_tensorboard is True:
print('python MIL_train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode +
' --batch_size ' + batch_size + ' --patch_size ' + patch_size + ' --lr ' + lr + ' --lrf '
+ lrf + ' --enable_tensorboard --dataroot ' + dataroot + ' --model_path ' + model_path
+ ' --draw_root ' + draw_root)
print('')
else:
print('python MIL_train.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode +
' --batch_size ' + batch_size + ' --patch_size ' + patch_size + ' --lr ' + lr + ' --lrf '
+ lrf + ' --dataroot ' + dataroot + ' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
for model_idx in model_idxs:
print('python MIL_test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --edge_size ' + edge_size + ' --patch_size ' + patch_size +
' --batch_size 1 --data_augmentation_mode ' + data_augmentation_mode + ' --dataroot ' +
dataroot + ' --model_path ' + model_path + ' --draw_root ' + draw_root)
print('')
if test_enable_attention_check is True: # 设置多个batch的实验
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode +
' --MIL_Stripe --enable_attention_check --check_minibatch 10' +
' --dataroot ' + CLS_dataroot + ' --model_path ' + model_path +
' --draw_root ' + imaging_root)
print('')
print('python MIL_test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --shuffle_attention_check --MIL_Stripe --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode +
' --shuffle_dataloader --batch_size 4 --check_minibatch 10' + ' --patch_size ' + patch_size +
' --dataroot ' + dataroot + ' --model_path ' + model_path +
' --draw_root ' + imaging_root)
print('')
print('python MIL_test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --shuffle_attention_check --MIL_Stripe --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode +
' --batch_size 4 --check_minibatch 10' + ' --patch_size ' + patch_size +
' --dataroot ' + dataroot + ' --model_path ' + model_path +
' --draw_root ' + imaging_root)
print('')
print('python MIL_test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --shuffle_attention_check --MIL_Stripe --edge_size ' + edge_size +
' --data_augmentation_mode ' + data_augmentation_mode +
' --batch_size 1 --check_minibatch 10' + ' --patch_size ' + patch_size +
' --dataroot ' + dataroot + ' --model_path ' + model_path +
' --draw_root ' + imaging_root)
print('')
else:
print('python Test.py --model_idx ' + model_idx + '_' + edge_size + '_' + lr_name
+ '_PT_lf' + lf_name + '_b' + batch_size + '_p' + patch_size + '_' + dataset_name +
'_MIL --edge_size ' + edge_size + ' --data_augmentation_mode ' + data_augmentation_mode +
' --MIL_Stripe --dataroot ' + CLS_dataroot + ' --model_path ' + model_path +
' --draw_root ' + draw_root)
print('')
'''
if __name__ == '__main__':
print('#!/bin/sh')
print('')
# CLS-MIL调参的第一步是使用一个经验参数进行简单摸索,看看大家结果大概是多少,同时和文献进行对比
# 首先摸索CLS对比实验结果
model_idxs = ['ViT', 'vgg16', 'vgg19', 'mobilenetv3', 'inceptionv3', 'xception',
'ResNet50', 'efficientnet_b3', 'swin_b', 'ResN50_ViT', 'conformer', 'cross_former']
batch_size = 8
dataset_name = 'NCT-CRC-HE-100K'
write_CLS_script(model_idxs=model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=True,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs')
# 正式实验的时候,后面还需要做各种MIL的消融实验
# TODO 更多write_MIL_script
# 其次摸索CLS+特定模型vit+不同数据增强 对比实验结果
augmentation_names = ['Cutout', 'Mixup', 'CutMix']
write_CLS_AUG_script(model_idx='ViT',
augmentation_names=augmentation_names,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=True,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs')
# 最后摸索MIL+ViT的实验结果
MIL_model_idxs = ['ViT', ]
# MIL ablations
write_MIL_script(model_idxs=MIL_model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
patch_size=16,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=False,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs',
imaging_root='/root/autodl-tmp/imaging_results')
write_MIL_script(model_idxs=MIL_model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
patch_size=64,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=False,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs',
imaging_root='/root/autodl-tmp/imaging_results')
write_MIL_script(model_idxs=MIL_model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
patch_size=48,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=False,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs',
imaging_root='/root/autodl-tmp/imaging_results')
write_MIL_script(model_idxs=MIL_model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
patch_size=96,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=False,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs',
imaging_root='/root/autodl-tmp/imaging_results')
write_MIL_script(model_idxs=MIL_model_idxs,
data_augmentation_mode=3,
edge_size=384,
batch_size=batch_size,
patch_size=128,
lr=0.000007,
lrf=0.35,
enable_tensorboard=True,
test_enable_attention_check=False,
dataset_name=dataset_name,
dataroot='/root/autodl-tmp/datasets/',
model_path='/root/autodl-tmp/saved_models',
draw_root='/root/autodl-tmp/runs',
imaging_root='/root/autodl-tmp/imaging_results')
# 调参实验的时候,先调MIL到最好,然后用参数去跑CLS实验看结果
print('cd /home/pancreatic-cancer-diagnosis-tansformer/code/utils')
print('')
print(
'python check_log_json.py --enable_notify --draw_root /root/autodl-tmp/runs --record_dir /root/autodl-tmp/CSV_logs')
print('')
print('shutdown')
'''
def get_args_parser():
parser = argparse.ArgumentParser(description='Automatically write shell script for training')
# Model Name or index
parser.add_argument('--lr_mystr', default=None, type=str, help='Model lr EG: 506 -> 0.000006')
parser.add_argument('--lrf_mystr', default=None, type=str, help='Model lrf EG: 50 -> cosine decay to 50%')
parser.add_argument('--data_augmentation_mode', default=None, type=str, help='ROSE,pRCC:0; CAM16,WBC:3')
parser.add_argument('--dataset_name', default=None, type=str, help='ROSE,pRCC,CAM16,WBC ?')
parser.add_argument('--GPU_idx', default='0', type=str, help='Experiment GPU_idx EG: 0')
return parser
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
print('#!/bin/sh')
print('')
# add DropPos-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='DropPos-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_DropPos_CPIAm_E200',
model_weight_name='ViT_b16_224_timm_DropPos_ALL_200.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
'''
# add MAE-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='MAE-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_mae_CPIAm_E100',
model_weight_name='ViT_b16_224_timm_mae_ALL_100.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
# add SDMAE-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='SDMAE-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_SDMAE_CPIAm_E80',
model_weight_name='ViT_b16_224_timm_SDMAE_ALL_80.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
# add GCMAE-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='GCMAE-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_GCMAE_CPIAm_E80',
model_weight_name='ViT_b16_224_timm_GCMAE_ALL_80.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
# add JIGSAW-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='JIGSAW-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_JIGSAW_CPIAm_E50',
model_weight_name='ViT_b16_224_timm_JIGSAW_ALL_50.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
# add DropPos-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='DropPos-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_DropPos_CPIAm_E200',
model_weight_name='ViT_b16_224_timm_DropPos_ALL_200.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
# add MAE+VPT
write_additional_PuzzleTuning_comparison_script(add_idx='MAE-VPT_promptstate',
lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_mae_Prompt_CPIAm_E199_promptstate',
model_weight_name='ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth',
GPU_idx='0', Prompt_input=True)
# add SAE-MAE-start
write_additional_PuzzleTuning_comparison_script(add_idx='SAE-MAE-start_promptstate',
lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='ViT_base_MAEImageNet_PuzzleTuning_SAE_E_199_promptstate',
model_weight_name='ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth',
GPU_idx='0', Prompt_input=True)
# add SAE-Random-start
write_additional_PuzzleTuning_comparison_script(add_idx='SAE-Random-start_promptstate',
lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='ViT_base_Random_PuzzleTuning_SAE_E_199_promptstate',
model_weight_name='ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth',
GPU_idx='0', Prompt_input=True)
# add PuzzleTuning_SAE_ViT_to_VPT-CPIA
write_additional_PuzzleTuning_comparison_script(add_idx='PuzzleTuning_SAE_ViT-CPIA', lr_mystr=args.lr_mystr,
lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name,
model_weight_idx='timm_PuzzleTuning_SAE_E_199',
model_weight_name='ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth',
GPU_idx=args.GPU_idx, Prompt_input=False)
'''
# rewrite all
'''
write_PuzzleTuning_comparison_script(lr_mystr=args.lr_mystr, lrf_mystr=args.lrf_mystr,
data_augmentation_mode=args.data_augmentation_mode,
dataset_name=args.dataset_name, GPU_idx=args.GPU_idx)
'''
'''
we can use the following codes to generates the additional exp scripts
# read and auto generate task info
import os
path='/root/autodl-tmp/PuzzleTuning_Comparison'
data_augmentation_dic = {'ROSE': '0', 'pRCC': '0', 'CAM16': '3', 'WBC': '3'}
for exp_root in os.listdir(path):
out_sh_name = exp_root + '.sh'
lr_mystr = exp_root.split('_')[0]
lrf_mystr = exp_root.split('_')[1].split('lf')[-1]
dataset_name = exp_root.split('_')[-1]
data_augmentation_mode = data_augmentation_dic[dataset_name]
print('nohup python Experiment_script_helper.py --lr_mystr ' + lr_mystr + ' --lrf_mystr ' + lrf_mystr
+ ' --data_augmentation_mode ' + data_augmentation_mode + ' --dataset_name ' + dataset_name + ' > '
+ out_sh_name + ' 2>&1 &')
# then, we use the shell to run this code with the generated lines
# the generate sh files has a nohup line at their first lines, so we can use this to erase
remove_nohup_ignoring_input_at_first_line(directory='./')
# we can use the func to combine the sh files:
concatenate_the_lines_from_several_files(directory='./', cat_file='0.sh')
'''
|