File size: 3,239 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
"""
data_augmentation Script ver: Sep 1st 20:30
dataset structure: ImageNet
image folder dataset is used.
"""
from torchvision import transforms
def data_augmentation(data_augmentation_mode=0, edge_size=384):
if data_augmentation_mode == 0: # ROSE + MARS
data_transforms = {
'train': transforms.Compose([
transforms.RandomRotation((0, 180)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.CenterCrop(700), # center area for classification
transforms.Resize([edge_size, edge_size]),
transforms.ColorJitter(brightness=0.15, contrast=0.3, saturation=0.3, hue=0.06),
# HSL shift operation
transforms.ToTensor()
]),
'val': transforms.Compose([
transforms.CenterCrop(700),
transforms.Resize([edge_size, edge_size]),
transforms.ToTensor()
]),
}
elif data_augmentation_mode == 1: # Cervical
data_transforms = {
'train': transforms.Compose([
transforms.Resize([edge_size, edge_size]),
transforms.RandomVerticalFlip(),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter(brightness=0.15, contrast=0.3, saturation=0.3, hue=0.06),
# HSL shift operation
transforms.ToTensor()
]),
'val': transforms.Compose([
transforms.Resize([edge_size, edge_size]),
transforms.ToTensor()
]),
}
elif data_augmentation_mode == 2: # warwick
data_transforms = {
'train': transforms.Compose([
transforms.RandomRotation((0, 180)),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.CenterCrop(360), # center area for classification
transforms.Resize([edge_size, edge_size]),
transforms.ColorJitter(brightness=0.15, contrast=0.3, saturation=0.3, hue=0.06),
# HSL shift operation
transforms.ToTensor()
]),
'val': transforms.Compose([
transforms.CenterCrop(360),
transforms.Resize([edge_size, edge_size]),
transforms.ToTensor()
]),
}
elif data_augmentation_mode == 3: # for the squre input: just resize
data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.Resize([edge_size, edge_size]),
transforms.ColorJitter(brightness=0.15, contrast=0.3, saturation=0.3, hue=0.06),
# HSL shift operation
transforms.ToTensor()
]),
'val': transforms.Compose([
transforms.Resize([edge_size, edge_size]),
transforms.ToTensor()
]),
}
else:
print('no legal data augmentation is selected')
return -1
return data_transforms
|