File size: 15,887 Bytes
edcf5ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
"""
Transfer PuzzleTuning Pre-Training checkpoints Script ver: Oct 23rd 17:00
write a model based on the weight of a checkpoint file
EG: create a vit-base based on PuzzleTuning SAE
"""
import argparse
import sys
sys.path.append('..')
import os
import torch
import torch.nn as nn
from Backbone import getmodel, GetPromptModel
from SSL_structures import SAE
# Transfer pretrained MSHT checkpoints to normal model state_dict
def transfer_model_encoder(check_point_path, save_model_path, model_idx='ViT', prompt_mode=None,
Prompt_Token_num=20, edge_size=384, given_name=None):
if not os.path.exists(save_model_path):
os.makedirs(save_model_path)
if given_name is not None:
given_path = os.path.join(save_model_path, given_name)
else:
given_path = None
if prompt_mode == "Deep" or prompt_mode == "Shallow":
model = GetPromptModel.build_promptmodel(edge_size=edge_size, model_idx=model_idx, patch_size=16,
Prompt_Token_num=Prompt_Token_num, VPT_type=prompt_mode,
base_state_dict=None)
# elif prompt_mode == "Other" or prompt_mode == None:
else:
model = getmodel.get_model(model_idx=model_idx, pretrained_backbone=False, edge_size=edge_size)
'''
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
TempBest_state = {'model': best_model_wts, 'epoch': best_epoch_idx}
'''
state = torch.load(check_point_path)
transfer_name = os.path.splitext(os.path.split(check_point_path)[1])[0] + '_of_'
try:
model_state = state['model']
try:
print("checkpoint epoch", state['epoch'])
if prompt_mode is not None:
save_model_path = os.path.join(save_model_path, transfer_name +
model_idx + '_E_' + str(state['epoch']) + '_promptstate' + '.pth')
else:
save_model_path = os.path.join(save_model_path, transfer_name +
model_idx + '_E_' + str(state['epoch']) + '_transfer' + '.pth')
except:
print("no 'epoch' in state")
if prompt_mode is not None:
save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_promptstate' + '.pth')
else:
save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_transfer' + '.pth')
except:
print("not a checkpoint state (no 'model' in state)")
model_state = state
if prompt_mode is not None:
save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_promptstate' + '.pth')
else:
save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_transfer' + '.pth')
try:
model.load_state_dict(model_state)
print("model loaded")
print("model :", model_idx)
gpu_use = 0
except:
try:
model = nn.DataParallel(model)
model.load_state_dict(model_state, False)
print("DataParallel model loaded")
print("model :", model_idx)
gpu_use = -1
except:
print("model loading erro!!")
gpu_use = -2
if given_path is not None:
save_model_path = given_path
if gpu_use == -1:
# print(model)
if prompt_mode is not None:
prompt_state_dict = model.module.obtain_prompt()
# fixme maybe bug at DP module.obtain_prompt, just model.obtain_prompt is enough
print('prompt obtained')
torch.save(prompt_state_dict, save_model_path)
else:
torch.save(model.module.state_dict(), save_model_path)
print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)
elif gpu_use == 0:
if prompt_mode is not None:
prompt_state_dict = model.obtain_prompt()
print('prompt obtained')
torch.save(prompt_state_dict, save_model_path)
else:
torch.save(model.state_dict(), save_model_path)
print('model trained by a single GPU has been saved at ', save_model_path)
else:
print('erro')
def transfer_model_decoder(check_point_path, save_model_path,
model_idx='sae_vit_base_patch16_decoder', dec_idx='swin_unet',
prompt_mode=None, Prompt_Token_num=20, edge_size=384):
if not os.path.exists(save_model_path):
os.makedirs(save_model_path)
state = torch.load(check_point_path)
transfer_name = os.path.splitext(os.path.split(check_point_path)[1])[0] + '_of_'
model = SAE.__dict__[model_idx](img_size=edge_size, prompt_mode=prompt_mode, Prompt_Token_num=Prompt_Token_num,
basic_state_dict=None, dec_idx=dec_idx)
try:
model_state = state['model']
try:
print("checkpoint epoch", state['epoch'])
save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '_E_'
+ str(state['epoch']) + '.pth')
except:
print("no 'epoch' in state")
save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '.pth')
except:
print("not a checkpoint state (no 'model' in state)")
model_state = state
save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '.pth')
try:
model.load_state_dict(model_state)
print("model loaded")
print("model :", model_idx)
gpu_use = 0
except:
try:
model = nn.DataParallel(model)
model.load_state_dict(model_state, False)
print("DataParallel model loaded")
print("model :", model_idx)
gpu_use = -1
except:
print("model loading erro!!")
gpu_use = -2
else:
model = model.decoder
if gpu_use == -1:
torch.save(model.module.decoder.state_dict(), save_model_path)
print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)
elif gpu_use == 0:
torch.save(model.state_dict(), save_model_path)
print('model trained by a single GPU has been saved at ', save_model_path)
else:
print('erro')
def get_args_parser():
parser = argparse.ArgumentParser('Take pre-trained model from PuzzleTuning', add_help=False)
# Model Name or index
parser.add_argument('--given_name', default=None, type=str, help='name of the weight-state-dict')
parser.add_argument('--model_idx', default='ViT', type=str, help='taking the weight to the specified model')
parser.add_argument('--edge_size', default=224, type=int, help='images input size for model')
# PromptTuning
parser.add_argument('--PromptTuning', default=None, type=str,
help='Deep/Shallow to use Prompt Tuning model instead of Finetuning model, by default None')
# Prompt_Token_num
parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')
# PATH settings
parser.add_argument('--checkpoint_path', default=None, type=str, help='check_point_path')
parser.add_argument('--save_model_path', default=None, type=str, help='out put weight path for pre-trained model')
return parser
def main(args):
# fixme: now need a CUDA device as the model is save as a CUDA model!
# PuzzleTuning Template
"""
# Prompt
# transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep', Prompt_Token_num=20,given_name=given_name)
# not prompt model
# transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
# decoder
# transfer_model_decoder(checkpoint_path, save_model_path, model_idx='sae_vit_base_patch16_decoder', dec_idx='swin_unet', edge_size=224, prompt_mode='Deep')
# PuzzleTuning Experiments transfer records:
# 1 周期puzzle自动减小ratio,自动loop变化size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None (核心方法)
# ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_50_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20,given_name=given_name)
# PuzzleTuning Ablation studies:SAE+不同curriculum+不同VPT/ViT
# 2 周期puzzle自动减小ratio,自动loop变化size 迁移timm,PromptTuning:None,seg_decoder:None
# ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
# 3 固定puzzle ratio,固定patch size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None (服务器pt1)
# ViT_b16_224_timm_PuzzleTuning_fixp16fixr25_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16fixr25_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20, given_name=given_name)
# 4 固定puzzle ratio,固定patch size 迁移timm,PromptTuning:None,seg_decoder:None (服务器pt2)
# ViT_b16_224_timm_PuzzleTuning_fixp16fixr25_SAE_CPIAm_E_199.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16fixr25_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_E_199.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
# 5 变化puzzle ratio,固定patch size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None, strategy: ratio-decay (服务器pt3)
# ViT_b16_224_timm_PuzzleTuning_fixp16ratiodecay_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16ratiodecay_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20, given_name=given_name)
# 6 变化puzzle ratio,固定patch size 迁移timm,PromptTuning:None,seg_decoder:None (服务器pt4)
# ViT_b16_224_timm_PuzzleTuning_fixp16ratiodecay_SAE_CPIAm_E_199.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16ratiodecay_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_E_199.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
# PuzzleTuning Ablation studies:上游不要puzzle 所以是 VPT+MAE
# 7 MAE+VPT,迁移timm,PromptTuning:VPT-Deep,seg_decoder:None (A40*4服务器pt5)
# ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_MAE_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_mae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20, given_name=given_name)
# 8 周期puzzle自动减小ratio,自动loop变化size 迁移MAEImageNet,PromptTuning:VPT-Deep,seg_decoder:None (A100-PCIE*2 服务器pt6)
# ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_MAEImageNet_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20, given_name=given_name)
# 9 周期puzzle自动减小ratio,自动loop变化size 迁移Random,PromptTuning:VPT-Deep,seg_decoder:None (A40*4服务器pt7)
# ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_Random_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
Prompt_Token_num=20, given_name=given_name)
# 10 周期puzzle自动减小ratio,自动loop变化size 迁移Random,PromptTuning:None,seg_decoder:None (4090*6服务器pt8)
# ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_E_199.pth
checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_tr_MAEImageNet_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
save_model_path = '/root/autodl-tmp/output_models'
given_name = r'ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_E_199.pth'
transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
"""
transfer_model_encoder(args.checkpoint_path, args.save_model_path,
model_idx=args.model_idx, edge_size=args.edge_size,
prompt_mode=args.PromptTuning, Prompt_Token_num=args.Prompt_Token_num,
given_name=args.given_name)
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
main(args)
|