File size: 15,887 Bytes
edcf5ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
"""
Transfer PuzzleTuning Pre-Training checkpoints    Script  ver: Oct 23rd 17:00

write a model based on the weight of a checkpoint file
EG: create a vit-base based on PuzzleTuning SAE

"""
import argparse

import sys
sys.path.append('..')
import os
import torch
import torch.nn as nn

from Backbone import getmodel, GetPromptModel
from SSL_structures import SAE


# Transfer pretrained MSHT checkpoints to normal model state_dict
def transfer_model_encoder(check_point_path, save_model_path, model_idx='ViT', prompt_mode=None,
                           Prompt_Token_num=20, edge_size=384, given_name=None):
    if not os.path.exists(save_model_path):
        os.makedirs(save_model_path)

    if given_name is not None:
        given_path = os.path.join(save_model_path, given_name)
    else:
        given_path = None

    if prompt_mode == "Deep" or prompt_mode == "Shallow":
        model = GetPromptModel.build_promptmodel(edge_size=edge_size, model_idx=model_idx, patch_size=16,
                                                 Prompt_Token_num=Prompt_Token_num, VPT_type=prompt_mode,
                                                 base_state_dict=None)
    # elif prompt_mode == "Other" or prompt_mode == None:
    else:
        model = getmodel.get_model(model_idx=model_idx, pretrained_backbone=False, edge_size=edge_size)
    '''
    state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
    TempBest_state = {'model': best_model_wts, 'epoch': best_epoch_idx}
    '''
    state = torch.load(check_point_path)

    transfer_name = os.path.splitext(os.path.split(check_point_path)[1])[0] + '_of_'

    try:
        model_state = state['model']
        try:
            print("checkpoint epoch", state['epoch'])
            if prompt_mode is not None:
                save_model_path = os.path.join(save_model_path, transfer_name +
                                               model_idx + '_E_' + str(state['epoch']) + '_promptstate' + '.pth')
            else:
                save_model_path = os.path.join(save_model_path, transfer_name +
                                               model_idx + '_E_' + str(state['epoch']) + '_transfer' + '.pth')

        except:
            print("no 'epoch' in state")
            if prompt_mode is not None:
                save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_promptstate' + '.pth')
            else:
                save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_transfer' + '.pth')
    except:
        print("not a checkpoint state (no 'model' in state)")
        model_state = state
        if prompt_mode is not None:
            save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_promptstate' + '.pth')
        else:
            save_model_path = os.path.join(save_model_path, transfer_name + model_idx + '_transfer' + '.pth')

    try:
        model.load_state_dict(model_state)
        print("model loaded")
        print("model :", model_idx)
        gpu_use = 0
    except:
        try:
            model = nn.DataParallel(model)
            model.load_state_dict(model_state, False)
            print("DataParallel model loaded")
            print("model :", model_idx)
            gpu_use = -1
        except:
            print("model loading erro!!")
            gpu_use = -2

    if given_path is not None:
        save_model_path = given_path

    if gpu_use == -1:
        # print(model)
        if prompt_mode is not None:
            prompt_state_dict = model.module.obtain_prompt()
            # fixme maybe bug at DP module.obtain_prompt, just model.obtain_prompt is enough
            print('prompt obtained')
            torch.save(prompt_state_dict, save_model_path)
        else:
            torch.save(model.module.state_dict(), save_model_path)
        print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)

    elif gpu_use == 0:
        if prompt_mode is not None:
            prompt_state_dict = model.obtain_prompt()
            print('prompt obtained')
            torch.save(prompt_state_dict, save_model_path)
        else:
            torch.save(model.state_dict(), save_model_path)
        print('model trained by a single GPU has been saved at ', save_model_path)
    else:
        print('erro')


def transfer_model_decoder(check_point_path, save_model_path,
                           model_idx='sae_vit_base_patch16_decoder', dec_idx='swin_unet',
                           prompt_mode=None, Prompt_Token_num=20, edge_size=384):

    if not os.path.exists(save_model_path):
        os.makedirs(save_model_path)

    state = torch.load(check_point_path)

    transfer_name = os.path.splitext(os.path.split(check_point_path)[1])[0] + '_of_'

    model = SAE.__dict__[model_idx](img_size=edge_size, prompt_mode=prompt_mode, Prompt_Token_num=Prompt_Token_num,
                                    basic_state_dict=None, dec_idx=dec_idx)

    try:
        model_state = state['model']
        try:
            print("checkpoint epoch", state['epoch'])
            save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '_E_'
                                           + str(state['epoch']) + '.pth')


        except:
            print("no 'epoch' in state")
            save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '.pth')
    except:
        print("not a checkpoint state (no 'model' in state)")
        model_state = state
        save_model_path = os.path.join(save_model_path, transfer_name + 'Decoder_' + dec_idx + '.pth')

    try:
        model.load_state_dict(model_state)
        print("model loaded")
        print("model :", model_idx)
        gpu_use = 0
    except:
        try:
            model = nn.DataParallel(model)
            model.load_state_dict(model_state, False)
            print("DataParallel model loaded")
            print("model :", model_idx)
            gpu_use = -1
        except:
            print("model loading erro!!")
            gpu_use = -2

    else:
        model = model.decoder

    if gpu_use == -1:
        torch.save(model.module.decoder.state_dict(), save_model_path)
        print('model trained by multi-GPUs has its single GPU copy saved at ', save_model_path)

    elif gpu_use == 0:
        torch.save(model.state_dict(), save_model_path)
        print('model trained by a single GPU has been saved at ', save_model_path)
    else:
        print('erro')


def get_args_parser():
    parser = argparse.ArgumentParser('Take pre-trained model from PuzzleTuning', add_help=False)

    # Model Name or index
    parser.add_argument('--given_name', default=None, type=str, help='name of the weight-state-dict')
    parser.add_argument('--model_idx', default='ViT', type=str, help='taking the weight to the specified model')
    parser.add_argument('--edge_size', default=224, type=int, help='images input size for model')

    # PromptTuning
    parser.add_argument('--PromptTuning', default=None, type=str,
                        help='Deep/Shallow to use Prompt Tuning model instead of Finetuning model, by default None')
    # Prompt_Token_num
    parser.add_argument('--Prompt_Token_num', default=20, type=int, help='Prompt_Token_num')

    # PATH settings
    parser.add_argument('--checkpoint_path', default=None, type=str, help='check_point_path')
    parser.add_argument('--save_model_path', default=None, type=str, help='out put weight path for pre-trained model')

    return parser


def main(args):
    # fixme: now need a CUDA device as the model is save as a CUDA model!


    # PuzzleTuning Template
    """
    # Prompt
    # transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep', Prompt_Token_num=20,given_name=given_name)

    # not prompt model
    # transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)

    # decoder
    # transfer_model_decoder(checkpoint_path, save_model_path, model_idx='sae_vit_base_patch16_decoder', dec_idx='swin_unet', edge_size=224, prompt_mode='Deep')


    # PuzzleTuning Experiments transfer records:
    # 1 周期puzzle自动减小ratio,自动loop变化size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None (核心方法)
    # ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_50_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20,given_name=given_name)

    # PuzzleTuning Ablation studies:SAE+不同curriculum+不同VPT/ViT
    # 2 周期puzzle自动减小ratio,自动loop变化size 迁移timm,PromptTuning:None,seg_decoder:None
    # ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_CPIAm_E_199.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)

    # 3 固定puzzle ratio,固定patch size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None  (服务器pt1)
    # ViT_b16_224_timm_PuzzleTuning_fixp16fixr25_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16fixr25_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20, given_name=given_name)

    # 4 固定puzzle ratio,固定patch size 迁移timm,PromptTuning:None,seg_decoder:None (服务器pt2)
    # ViT_b16_224_timm_PuzzleTuning_fixp16fixr25_SAE_CPIAm_E_199.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16fixr25_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16fixr25_CPIAm_E_199.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)

    # 5 变化puzzle ratio,固定patch size 迁移timm,PromptTuning:VPT-Deep,seg_decoder:None, strategy: ratio-decay (服务器pt3)
    # ViT_b16_224_timm_PuzzleTuning_fixp16ratiodecay_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16ratiodecay_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20, given_name=given_name)

    # 6 变化puzzle ratio,固定patch size 迁移timm,PromptTuning:None,seg_decoder:None (服务器pt4)
    # ViT_b16_224_timm_PuzzleTuning_fixp16ratiodecay_SAE_CPIAm_E_199.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_fixp16ratiodecay_vit_base_patch16_tr_timm_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_SAE_fixp16ratiodecay_CPIAm_E_199.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)

    # PuzzleTuning Ablation studies:上游不要puzzle 所以是 VPT+MAE
    # 7 MAE+VPT,迁移timm,PromptTuning:VPT-Deep,seg_decoder:None (A40*4服务器pt5)
    # ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_MAE_vit_base_Prompt_Deep_tokennum_20_tr_timm_CPIAm/PuzzleTuning_mae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_timm_PuzzleTuning_MAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20, given_name=given_name)

    # 8 周期puzzle自动减小ratio,自动loop变化size 迁移MAEImageNet,PromptTuning:VPT-Deep,seg_decoder:None (A100-PCIE*2 服务器pt6)
    # ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_MAEImageNet_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20, given_name=given_name)

    # 9 周期puzzle自动减小ratio,自动loop变化size 迁移Random,PromptTuning:VPT-Deep,seg_decoder:None  (A40*4服务器pt7)
    # ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_Prompt_Deep_tokennum_20_tr_Random_CPIAm/PuzzleTuning_sae_vit_base_patch16_Prompt_Deep_tokennum_20_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_Random_PuzzleTuning_SAE_CPIAm_Prompt_Deep_tokennum_20_E_199_promptstate.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, prompt_mode='Deep',
                           Prompt_Token_num=20, given_name=given_name)
                           
    # 10 周期puzzle自动减小ratio,自动loop变化size 迁移Random,PromptTuning:None,seg_decoder:None  (4090*6服务器pt8)
    # ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_E_199.pth
    checkpoint_path = '/root/autodl-tmp/runs/PuzzleTuning_SAE_vit_base_patch16_tr_MAEImageNet_CPIAm/PuzzleTuning_sae_vit_base_patch16_checkpoint-199.pth'
    save_model_path = '/root/autodl-tmp/output_models'
    given_name = r'ViT_b16_224_MAEImageNet_PuzzleTuning_SAE_CPIAm_E_199.pth'
    transfer_model_encoder(checkpoint_path, save_model_path, model_idx='ViT', edge_size=224, given_name=given_name)
    """

    transfer_model_encoder(args.checkpoint_path, args.save_model_path,
                           model_idx=args.model_idx, edge_size=args.edge_size,
                           prompt_mode=args.PromptTuning, Prompt_Token_num=args.Prompt_Token_num,
                           given_name=args.given_name)


if __name__ == '__main__':
    args = get_args_parser()
    args = args.parse_args()

    main(args)