|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ |
|
from mmdet.utils import get_root_logger |
|
from mmcv.runner import load_checkpoint |
|
|
|
NEG_INF = -1000000 |
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class DynamicPosBias(nn.Module): |
|
def __init__(self, dim, num_heads, residual): |
|
super().__init__() |
|
self.residual = residual |
|
self.num_heads = num_heads |
|
self.pos_dim = dim // 4 |
|
self.pos_proj = nn.Linear(2, self.pos_dim) |
|
self.pos1 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.pos_dim), |
|
) |
|
self.pos2 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.pos_dim) |
|
) |
|
self.pos3 = nn.Sequential( |
|
nn.LayerNorm(self.pos_dim), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(self.pos_dim, self.num_heads) |
|
) |
|
def forward(self, biases): |
|
if self.residual: |
|
pos = self.pos_proj(biases) |
|
pos = pos + self.pos1(pos) |
|
pos = pos + self.pos2(pos) |
|
pos = self.pos3(pos) |
|
else: |
|
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) |
|
return pos |
|
|
|
def flops(self, N): |
|
flops = N * 2 * self.pos_dim |
|
flops += N * self.pos_dim * self.pos_dim |
|
flops += N * self.pos_dim * self.pos_dim |
|
flops += N * self.pos_dim * self.num_heads |
|
return flops |
|
|
|
class Attention(nn.Module): |
|
r""" Multi-head self attention module with relative position bias. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, dim, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., |
|
position_bias=True): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
self.position_bias = position_bias |
|
if self.position_bias: |
|
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, H, W, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Gh*Gw, Gh*Gw) or None |
|
""" |
|
group_size = (H, W) |
|
B_, N, C = x.shape |
|
assert H*W == N |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous() |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
if self.position_bias: |
|
|
|
position_bias_h = torch.arange(1 - group_size[0], group_size[0], device=attn.device) |
|
position_bias_w = torch.arange(1 - group_size[1], group_size[1], device=attn.device) |
|
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) |
|
biases = biases.flatten(1).transpose(0, 1).contiguous().float() |
|
|
|
|
|
coords_h = torch.arange(group_size[0], device=attn.device) |
|
coords_w = torch.arange(group_size[1], device=attn.device) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) |
|
coords_flatten = torch.flatten(coords, 1) |
|
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] |
|
relative_coords = relative_coords.permute(1, 2, 0).contiguous() |
|
relative_coords[:, :, 0] += group_size[0] - 1 |
|
relative_coords[:, :, 1] += group_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * group_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) |
|
|
|
pos = self.pos(biases) |
|
|
|
relative_position_bias = pos[relative_position_index.view(-1)].view( |
|
group_size[0] * group_size[1], group_size[0] * group_size[1], -1) |
|
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nG = mask.shape[0] |
|
attn = attn.view(B_ // nG, nG, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f'dim={self.dim}, num_heads={self.num_heads}' |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
excluded_flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
excluded_flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
excluded_flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
if self.position_bias: |
|
flops += self.pos.flops(N) |
|
return flops, excluded_flops |
|
|
|
|
|
class CrossFormerBlock(nn.Module): |
|
r""" CrossFormer Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
group_size (int): Window size. |
|
lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, num_heads, group_size=7, interval=8, lsda_flag=0, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., |
|
act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.group_size = group_size |
|
self.interval = interval |
|
self.lsda_flag = lsda_flag |
|
self.mlp_ratio = mlp_ratio |
|
self.num_patch_size = num_patch_size |
|
|
|
self.norm1 = norm_layer(dim) |
|
|
|
self.attn = Attention( |
|
dim, num_heads=num_heads, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, |
|
position_bias=True) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
def forward(self, x, H, W): |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W) |
|
|
|
if min(H, W) <= self.group_size: |
|
|
|
self.lsda_flag = 0 |
|
self.group_size = min(H, W) |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
size_div = self.interval if self.lsda_flag == 1 else self.group_size |
|
pad_l = pad_t = 0 |
|
pad_r = (size_div - W % size_div) % size_div |
|
pad_b = (size_div - H % size_div) % size_div |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
mask = torch.zeros((1, Hp, Wp, 1), device=x.device) |
|
if pad_b > 0: |
|
mask[:, -pad_b:, :, :] = -1 |
|
if pad_r > 0: |
|
mask[:, :, -pad_r:, :] = -1 |
|
|
|
|
|
if self.lsda_flag == 0: |
|
G = Gh = Gw = self.group_size |
|
x = x.reshape(B, Hp // G, G, Wp // G, G, C).permute(0, 1, 3, 2, 4, 5).contiguous() |
|
x = x.reshape(B * Hp * Wp // G**2, G**2, C) |
|
nG = Hp * Wp // G**2 |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
mask = mask.reshape(1, Hp // G, G, Wp // G, G, 1).permute(0, 1, 3, 2, 4, 5).contiguous() |
|
mask = mask.reshape(nG, 1, G * G) |
|
attn_mask = torch.zeros((nG, G * G, G * G), device=x.device) |
|
attn_mask = attn_mask.masked_fill(mask < 0, NEG_INF) |
|
else: |
|
attn_mask = None |
|
else: |
|
I, Gh, Gw = self.interval, Hp // self.interval, Wp // self.interval |
|
x = x.reshape(B, Gh, I, Gw, I, C).permute(0, 2, 4, 1, 3, 5).contiguous() |
|
x = x.reshape(B * I * I, Gh * Gw, C) |
|
nG = I ** 2 |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
mask = mask.reshape(1, Gh, I, Gw, I, 1).permute(0, 2, 4, 1, 3, 5).contiguous() |
|
mask = mask.reshape(nG, 1, Gh * Gw) |
|
attn_mask = torch.zeros((nG, Gh * Gw, Gh * Gw), device=x.device) |
|
attn_mask = attn_mask.masked_fill(mask < 0, NEG_INF) |
|
else: |
|
attn_mask = None |
|
|
|
|
|
x = self.attn(x, Gh, Gw, mask=attn_mask) |
|
|
|
|
|
if self.lsda_flag == 0: |
|
x = x.reshape(B, Hp // G, Wp // G, G, G, C).permute(0, 1, 3, 2, 4, 5).contiguous() |
|
else: |
|
x = x.reshape(B, I, I, Gh, Gw, C).permute(0, 3, 1, 4, 2, 5).contiguous() |
|
x = x.reshape(B, Hp, Wp, C) |
|
|
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
x = x.view(B, H * W, C) |
|
|
|
|
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ |
|
f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += self.dim * H * W |
|
|
|
size_div = self.interval if self.lsda_flag == 1 else self.group_size |
|
Hp = math.ceil(H / size_div) * size_div |
|
Wp = math.ceil(W / size_div) * size_div |
|
Gh = Hp / size_div if self.lsda_flag == 1 else self.group_size |
|
Gw = Wp / size_div if self.lsda_flag == 1 else self.group_size |
|
nG = Hp * Wp / Gh / Gw |
|
attn_flops, attn_excluded_flops = self.attn.flops(Gh * Gw) |
|
flops += nG * attn_flops |
|
excluded_flops = nG * attn_excluded_flops |
|
|
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
|
|
flops += self.dim * H * W |
|
return flops, excluded_flops |
|
|
|
class PatchMerging(nn.Module): |
|
r""" Patch Merging Layer. |
|
|
|
Args: |
|
input_resolution (tuple[int]): Resolution of input feature. |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.dim = dim |
|
self.reductions = nn.ModuleList() |
|
self.patch_size = patch_size |
|
self.norm = norm_layer(dim) |
|
|
|
for i, ps in enumerate(patch_size): |
|
if i == len(patch_size) - 1: |
|
out_dim = 2 * dim // 2 ** i |
|
else: |
|
out_dim = 2 * dim // 2 ** (i + 1) |
|
stride = 2 |
|
padding = (ps - stride) // 2 |
|
self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps, |
|
stride=stride, padding=padding)) |
|
|
|
def forward(self, x, H, W): |
|
""" |
|
x: B, H*W, C |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." |
|
|
|
x = self.norm(x) |
|
x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() |
|
|
|
xs = [] |
|
for i in range(len(self.reductions)): |
|
tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2).contiguous() |
|
xs.append(tmp_x) |
|
x = torch.cat(xs, dim=2) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return f"input_resolution={self.input_resolution}, dim={self.dim}" |
|
|
|
def flops(self): |
|
H, W = self.input_resolution |
|
flops = H * W * self.dim |
|
for i, ps in enumerate(self.patch_size): |
|
if i == len(self.patch_size) - 1: |
|
out_dim = 2 * self.dim // 2 ** i |
|
else: |
|
out_dim = 2 * self.dim // 2 ** (i + 1) |
|
flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim |
|
return flops |
|
|
|
|
|
class Stage(nn.Module): |
|
""" CrossFormer blocks for one stage. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resolution. |
|
depth (int): Number of blocks. |
|
num_heads (int): Number of attention heads. |
|
group_size (int): Group size. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Ghether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, dim, input_resolution, depth, num_heads, group_size, interval, |
|
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, |
|
patch_size_end=[4], num_patch_size=None): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
lsda_flag = 0 if (i % 2 == 0) else 1 |
|
self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution, |
|
num_heads=num_heads, group_size=group_size, interval=interval, |
|
lsda_flag=lsda_flag, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop, attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, |
|
norm_layer=norm_layer, |
|
num_patch_size=num_patch_size)) |
|
|
|
|
|
if downsample is not None: |
|
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer, |
|
patch_size=patch_size_end, num_input_patch_size=num_patch_size) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
for blk in self.blocks: |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x) |
|
else: |
|
x = blk(x, H, W) |
|
|
|
B, _, C = x.shape |
|
feat = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous() |
|
if self.downsample is not None: |
|
x = self.downsample(x, H, W) |
|
return feat, x |
|
|
|
def extra_repr(self) -> str: |
|
return f"dim={self.dim}, depth={self.depth}" |
|
|
|
def flops(self): |
|
flops = 0 |
|
excluded_flops = 0 |
|
for blk in self.blocks: |
|
blk_flops, blk_excluded_flops = blk.flops() |
|
flops += blk_flops |
|
excluded_flops += blk_excluded_flops |
|
if self.downsample is not None: |
|
flops += self.downsample.flops() |
|
return flops, excluded_flops |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
r""" Image to Patch Embedding |
|
|
|
Args: |
|
img_size (int): Image size. Default: 224. |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
|
|
patches_resolution = [img_size[0] // 4, img_size[1] // 4] |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.patches_resolution = patches_resolution |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.projs = nn.ModuleList() |
|
for i, ps in enumerate(patch_size): |
|
if i == len(patch_size) - 1: |
|
dim = embed_dim // 2 ** i |
|
else: |
|
dim = embed_dim // 2 ** (i + 1) |
|
stride = 4 |
|
padding = (ps - 4) // 2 |
|
self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding)) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
xs = [] |
|
for i in range(len(self.projs)): |
|
tx = self.projs[i](x).flatten(2).transpose(1, 2) |
|
xs.append(tx) |
|
x = torch.cat(xs, dim=2) |
|
if self.norm is not None: |
|
x = self.norm(x) |
|
return x, H, W |
|
|
|
def flops(self): |
|
Ho, Wo = self.patches_resolution |
|
flops = 0 |
|
for i, ps in enumerate(self.patch_size): |
|
if i == len(self.patch_size) - 1: |
|
dim = self.embed_dim // 2 ** i |
|
else: |
|
dim = self.embed_dim // 2 ** (i + 1) |
|
flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i]) |
|
if self.norm is not None: |
|
flops += Ho * Wo * self.embed_dim |
|
return flops |
|
|
|
|
|
class CrossFormer(nn.Module): |
|
r""" CrossFormer |
|
A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention` - |
|
|
|
Args: |
|
img_size (int | tuple(int)): Input image size. Default 224 |
|
patch_size (int | tuple(int)): Patch size. Default: 4 |
|
in_chans (int): Number of input image channels. Default: 3 |
|
num_classes (int): Number of classes for classification head. Default: 1000 |
|
embed_dim (int): Patch embedding dimension. Default: 96 |
|
depths (tuple(int)): Depth of each stage. |
|
num_heads (tuple(int)): Number of attention heads in different layers. |
|
group_size (int): Group size. Default: 7 |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None |
|
drop_rate (float): Dropout rate. Default: 0 |
|
attn_drop_rate (float): Attention dropout rate. Default: 0 |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.1 |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True |
|
use_checkpoint (bool): Ghether to use checkpointing to save memory. Default: False |
|
""" |
|
|
|
def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000, |
|
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], |
|
group_size=7, crs_interval=[8, 4, 2, 1], mlp_ratio=4., qkv_bias=True, qk_scale=None, |
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, |
|
norm_layer=nn.LayerNorm, patch_norm=True, |
|
use_checkpoint=False, merge_size=[[2], [2], [2]], **kwargs): |
|
super().__init__() |
|
|
|
self.num_classes = num_classes |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.patch_norm = patch_norm |
|
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) |
|
self.mlp_ratio = mlp_ratio |
|
|
|
|
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
patches_resolution = self.patch_embed.patches_resolution |
|
self.patches_resolution = patches_resolution |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] |
|
|
|
|
|
self.layers = nn.ModuleList() |
|
|
|
num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size] |
|
for i_layer in range(self.num_layers): |
|
patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None |
|
num_patch_size = num_patch_sizes[i_layer] |
|
layer = Stage(dim=int(embed_dim * 2 ** i_layer), |
|
input_resolution=(patches_resolution[0] // (2 ** i_layer), |
|
patches_resolution[1] // (2 ** i_layer)), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
group_size=group_size[i_layer], |
|
interval=crs_interval[i_layer], |
|
mlp_ratio=self.mlp_ratio, |
|
qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint, |
|
patch_size_end=patch_size_end, |
|
num_patch_size=num_patch_size) |
|
self.layers.append(layer) |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = get_root_logger() |
|
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'absolute_pos_embed'} |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay_keywords(self): |
|
return {'relative_position_bias_table'} |
|
|
|
def forward(self, x): |
|
x, H, W = self.patch_embed(x) |
|
x = self.pos_drop(x) |
|
|
|
outs = [] |
|
for i, layer in enumerate(self.layers): |
|
feat, x = layer(x, H //4 //(2 ** i), W //4 //(2 ** i)) |
|
outs.append(feat) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return outs |
|
|
|
def flops(self): |
|
flops = 0 |
|
excluded_flops = 0 |
|
flops += self.patch_embed.flops() |
|
for i, layer in enumerate(self.layers): |
|
layer_flops, layer_excluded_flops = layer.flops() |
|
flops += layer_flops |
|
excluded_flops += layer_excluded_flops |
|
|
|
|
|
return flops, excluded_flops |
|
|