Tianyinus's picture
init submit
edcf5ee verified
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from mmdet.utils import get_root_logger
from mmcv.runner import load_checkpoint
NEG_INF = -1000000
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class DynamicPosBias(nn.Module):
def __init__(self, dim, num_heads, residual):
super().__init__()
self.residual = residual
self.num_heads = num_heads
self.pos_dim = dim // 4
self.pos_proj = nn.Linear(2, self.pos_dim)
self.pos1 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim),
)
self.pos2 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.pos_dim)
)
self.pos3 = nn.Sequential(
nn.LayerNorm(self.pos_dim),
nn.ReLU(inplace=True),
nn.Linear(self.pos_dim, self.num_heads)
)
def forward(self, biases):
if self.residual:
pos = self.pos_proj(biases) # 2Gh-1 * 2Gw-1, heads
pos = pos + self.pos1(pos)
pos = pos + self.pos2(pos)
pos = self.pos3(pos)
else:
pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
return pos
def flops(self, N):
flops = N * 2 * self.pos_dim
flops += N * self.pos_dim * self.pos_dim
flops += N * self.pos_dim * self.pos_dim
flops += N * self.pos_dim * self.num_heads
return flops
class Attention(nn.Module):
r""" Multi-head self attention module with relative position bias.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.,
position_bias=True):
super().__init__()
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.position_bias = position_bias
if self.position_bias:
self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, H, W, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Gh*Gw, Gh*Gw) or None
"""
group_size = (H, W)
B_, N, C = x.shape
assert H*W == N
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4).contiguous()
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1)) # (num_windows*B, N, N), N = Gh*Gw
if self.position_bias:
# generate mother-set
position_bias_h = torch.arange(1 - group_size[0], group_size[0], device=attn.device)
position_bias_w = torch.arange(1 - group_size[1], group_size[1], device=attn.device)
biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) # 2, 2Gh-1, 2W2-1
biases = biases.flatten(1).transpose(0, 1).contiguous().float()
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(group_size[0], device=attn.device)
coords_w = torch.arange(group_size[1], device=attn.device)
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Gh, Gw
coords_flatten = torch.flatten(coords, 1) # 2, Gh*Gw
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Gh*Gw, Gh*Gw
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Gh*Gw, Gh*Gw, 2
relative_coords[:, :, 0] += group_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += group_size[1] - 1
relative_coords[:, :, 0] *= 2 * group_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Gh*Gw, Gh*Gw
pos = self.pos(biases) # 2Gh-1 * 2Gw-1, heads
# select position bias
relative_position_bias = pos[relative_position_index.view(-1)].view(
group_size[0] * group_size[1], group_size[0] * group_size[1], -1) # Gh*Gw,Gh*Gw,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Gh*Gw, Gh*Gw
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nG = mask.shape[0]
attn = attn.view(B_ // nG, nG, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) # (B, nG, nHead, N, N)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
excluded_flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
excluded_flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
excluded_flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
if self.position_bias:
flops += self.pos.flops(N)
return flops, excluded_flops
class CrossFormerBlock(nn.Module):
r""" CrossFormer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
group_size (int): Window size.
lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, group_size=7, interval=8, lsda_flag=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.group_size = group_size
self.interval = interval
self.lsda_flag = lsda_flag
self.mlp_ratio = mlp_ratio
self.num_patch_size = num_patch_size
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop,
position_bias=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, H, W):
B, L, C = x.shape
assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W)
if min(H, W) <= self.group_size:
# if window size is larger than input resolution, we don't partition windows
self.lsda_flag = 0
self.group_size = min(H, W)
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# padding
size_div = self.interval if self.lsda_flag == 1 else self.group_size
pad_l = pad_t = 0
pad_r = (size_div - W % size_div) % size_div
pad_b = (size_div - H % size_div) % size_div
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
mask = torch.zeros((1, Hp, Wp, 1), device=x.device)
if pad_b > 0:
mask[:, -pad_b:, :, :] = -1
if pad_r > 0:
mask[:, :, -pad_r:, :] = -1
# group embeddings and generate attn_mask
if self.lsda_flag == 0: # SDA
G = Gh = Gw = self.group_size
x = x.reshape(B, Hp // G, G, Wp // G, G, C).permute(0, 1, 3, 2, 4, 5).contiguous()
x = x.reshape(B * Hp * Wp // G**2, G**2, C)
nG = Hp * Wp // G**2
# attn_mask
if pad_r > 0 or pad_b > 0:
mask = mask.reshape(1, Hp // G, G, Wp // G, G, 1).permute(0, 1, 3, 2, 4, 5).contiguous()
mask = mask.reshape(nG, 1, G * G)
attn_mask = torch.zeros((nG, G * G, G * G), device=x.device)
attn_mask = attn_mask.masked_fill(mask < 0, NEG_INF)
else:
attn_mask = None
else: # LDA
I, Gh, Gw = self.interval, Hp // self.interval, Wp // self.interval
x = x.reshape(B, Gh, I, Gw, I, C).permute(0, 2, 4, 1, 3, 5).contiguous()
x = x.reshape(B * I * I, Gh * Gw, C)
nG = I ** 2
# attn_mask
if pad_r > 0 or pad_b > 0:
mask = mask.reshape(1, Gh, I, Gw, I, 1).permute(0, 2, 4, 1, 3, 5).contiguous()
mask = mask.reshape(nG, 1, Gh * Gw)
attn_mask = torch.zeros((nG, Gh * Gw, Gh * Gw), device=x.device)
attn_mask = attn_mask.masked_fill(mask < 0, NEG_INF)
else:
attn_mask = None
# multi-head self-attention
x = self.attn(x, Gh, Gw, mask=attn_mask) # nG*B, G*G, C
# ungroup embeddings
if self.lsda_flag == 0:
x = x.reshape(B, Hp // G, Wp // G, G, G, C).permute(0, 1, 3, 2, 4, 5).contiguous() # B, Hp//G, G, Wp//G, G, C
else:
x = x.reshape(B, I, I, Gh, Gw, C).permute(0, 3, 1, 4, 2, 5).contiguous() # B, Gh, I, Gw, I, C
x = x.reshape(B, Hp, Wp, C)
# remove padding
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}"
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# Attention
size_div = self.interval if self.lsda_flag == 1 else self.group_size
Hp = math.ceil(H / size_div) * size_div
Wp = math.ceil(W / size_div) * size_div
Gh = Hp / size_div if self.lsda_flag == 1 else self.group_size
Gw = Wp / size_div if self.lsda_flag == 1 else self.group_size
nG = Hp * Wp / Gh / Gw
attn_flops, attn_excluded_flops = self.attn.flops(Gh * Gw)
flops += nG * attn_flops
excluded_flops = nG * attn_excluded_flops
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops, excluded_flops
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reductions = nn.ModuleList()
self.patch_size = patch_size
self.norm = norm_layer(dim)
for i, ps in enumerate(patch_size):
if i == len(patch_size) - 1:
out_dim = 2 * dim // 2 ** i
else:
out_dim = 2 * dim // 2 ** (i + 1)
stride = 2
padding = (ps - stride) // 2
self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps,
stride=stride, padding=padding))
def forward(self, x, H, W):
"""
x: B, H*W, C
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = self.norm(x)
x = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
xs = []
for i in range(len(self.reductions)):
tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2).contiguous()
xs.append(tmp_x)
x = torch.cat(xs, dim=2)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
for i, ps in enumerate(self.patch_size):
if i == len(self.patch_size) - 1:
out_dim = 2 * self.dim // 2 ** i
else:
out_dim = 2 * self.dim // 2 ** (i + 1)
flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim
return flops
class Stage(nn.Module):
""" CrossFormer blocks for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
group_size (int): Group size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Ghether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, group_size, interval,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
patch_size_end=[4], num_patch_size=None):
super().__init__()
self.dim = dim
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList()
for i in range(depth):
lsda_flag = 0 if (i % 2 == 0) else 1
self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, group_size=group_size, interval=interval,
lsda_flag=lsda_flag,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer,
num_patch_size=num_patch_size))
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer,
patch_size=patch_size_end, num_input_patch_size=num_patch_size)
else:
self.downsample = None
def forward(self, x, H, W):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x, H, W)
B, _, C = x.shape
feat = x.view(B, H, W, C).permute(0, 3, 1, 2).contiguous()
if self.downsample is not None:
x = self.downsample(x, H, W)
return feat, x
def extra_repr(self) -> str:
return f"dim={self.dim}, depth={self.depth}"
def flops(self):
flops = 0
excluded_flops = 0
for blk in self.blocks:
blk_flops, blk_excluded_flops = blk.flops()
flops += blk_flops
excluded_flops += blk_excluded_flops
if self.downsample is not None:
flops += self.downsample.flops()
return flops, excluded_flops
class PatchEmbed(nn.Module):
r""" Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None):
super().__init__()
img_size = to_2tuple(img_size)
# patch_size = to_2tuple(patch_size)
patches_resolution = [img_size[0] // 4, img_size[1] // 4] # only for flops calculation
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.in_chans = in_chans
self.embed_dim = embed_dim
self.projs = nn.ModuleList()
for i, ps in enumerate(patch_size):
if i == len(patch_size) - 1:
dim = embed_dim // 2 ** i
else:
dim = embed_dim // 2 ** (i + 1)
stride = 4
padding = (ps - 4) // 2
self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding))
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
B, C, H, W = x.shape
xs = []
for i in range(len(self.projs)):
tx = self.projs[i](x).flatten(2).transpose(1, 2)
xs.append(tx) # B Ph*Pw C
x = torch.cat(xs, dim=2)
if self.norm is not None:
x = self.norm(x)
return x, H, W
def flops(self):
Ho, Wo = self.patches_resolution
flops = 0
for i, ps in enumerate(self.patch_size):
if i == len(self.patch_size) - 1:
dim = self.embed_dim // 2 ** i
else:
dim = self.embed_dim // 2 ** (i + 1)
flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class CrossFormer(nn.Module):
r""" CrossFormer
A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention` -
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each stage.
num_heads (tuple(int)): Number of attention heads in different layers.
group_size (int): Group size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Ghether to use checkpointing to save memory. Default: False
"""
def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
group_size=7, crs_interval=[8, 4, 2, 1], mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, patch_norm=True,
use_checkpoint=False, merge_size=[[2], [2], [2]], **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution # [H//4, W//4] of original image size
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size]
for i_layer in range(self.num_layers):
patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None
num_patch_size = num_patch_sizes[i_layer]
layer = Stage(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
group_size=group_size[i_layer],
interval=crs_interval[i_layer],
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint,
patch_size_end=patch_size_end,
num_patch_size=num_patch_size)
self.layers.append(layer)
# # classification
# self.norm = norm_layer(self.num_features)
# self.avgpool = nn.AdaptiveAvgPool1d(1)
# self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = get_root_logger()
load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'absolute_pos_embed'}
@torch.jit.ignore
def no_weight_decay_keywords(self):
return {'relative_position_bias_table'}
def forward(self, x):
x, H, W = self.patch_embed(x)
x = self.pos_drop(x)
outs = []
for i, layer in enumerate(self.layers):
feat, x = layer(x, H //4 //(2 ** i), W //4 //(2 ** i))
outs.append(feat)
# # classification
# x = self.norm(x) # B L C
# x = self.avgpool(x.transpose(1, 2)) # B C 1
# x = torch.flatten(x, 1)
# x = self.head(x)
# return x
return outs
def flops(self):
flops = 0
excluded_flops = 0
flops += self.patch_embed.flops()
for i, layer in enumerate(self.layers):
layer_flops, layer_excluded_flops = layer.flops()
flops += layer_flops
excluded_flops += layer_excluded_flops
# flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
# flops += self.num_features * self.num_classes
return flops, excluded_flops