# -------------------------------------------------------- | |
# Swin Transformer | |
# Copyright (c) 2021 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# Written by Ze Liu | |
# --------------------------------------------------------' | |
import os | |
import yaml | |
from yacs.config import CfgNode as CN | |
_C = CN() | |
# Base config files | |
_C.BASE = [''] | |
# ----------------------------------------------------------------------------- | |
# Data settings | |
# ----------------------------------------------------------------------------- | |
_C.DATA = CN() | |
# Batch size for a single GPU, could be overwritten by command line argument | |
_C.DATA.BATCH_SIZE = 128 | |
# Path to dataset, could be overwritten by command line argument | |
_C.DATA.DATA_PATH = '' | |
# Dataset name | |
_C.DATA.DATASET = 'imagenet' | |
# Input image size | |
_C.DATA.IMG_SIZE = 224 | |
# Interpolation to resize image (random, bilinear, bicubic) | |
_C.DATA.INTERPOLATION = 'bicubic' | |
# Use zipped dataset instead of folder dataset | |
# could be overwritten by command line argument | |
_C.DATA.ZIP_MODE = False | |
# Cache Data in Memory, could be overwritten by command line argument | |
_C.DATA.CACHE_MODE = 'part' | |
# Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU. | |
_C.DATA.PIN_MEMORY = True | |
# Number of data loading threads | |
_C.DATA.NUM_WORKERS = 8 | |
# ----------------------------------------------------------------------------- | |
# Model settings | |
# ----------------------------------------------------------------------------- | |
_C.MODEL = CN() | |
# Model type | |
_C.MODEL.TYPE = 'swin' | |
# Model name | |
_C.MODEL.NAME = 'swin_tiny_patch4_window7_224' | |
# Checkpoint to resume, could be overwritten by command line argument | |
_C.MODEL.PRETRAIN_CKPT = './pretrained_ckpt/swin_tiny_patch4_window7_224.pth' | |
_C.MODEL.RESUME = '' | |
# Number of classes, overwritten in data preparation | |
_C.MODEL.NUM_CLASSES = 1000 | |
# Dropout rate | |
_C.MODEL.DROP_RATE = 0.0 | |
# Drop path rate | |
_C.MODEL.DROP_PATH_RATE = 0.1 | |
# Label Smoothing | |
_C.MODEL.LABEL_SMOOTHING = 0.1 | |
# Swin Transformer parameters | |
_C.MODEL.SWIN = CN() | |
_C.MODEL.SWIN.PATCH_SIZE = 4 | |
_C.MODEL.SWIN.IN_CHANS = 3 | |
_C.MODEL.SWIN.EMBED_DIM = 96 | |
_C.MODEL.SWIN.DEPTHS = [2, 2, 6, 2] | |
_C.MODEL.SWIN.DECODER_DEPTHS = [2, 2, 6, 2] | |
_C.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24] | |
_C.MODEL.SWIN.WINDOW_SIZE = 7 | |
_C.MODEL.SWIN.MLP_RATIO = 4. | |
_C.MODEL.SWIN.QKV_BIAS = True | |
_C.MODEL.SWIN.QK_SCALE = None | |
_C.MODEL.SWIN.APE = False | |
_C.MODEL.SWIN.PATCH_NORM = True | |
_C.MODEL.SWIN.FINAL_UPSAMPLE= "expand_first" | |
# ----------------------------------------------------------------------------- | |
# Training settings | |
# ----------------------------------------------------------------------------- | |
_C.TRAIN = CN() | |
_C.TRAIN.START_EPOCH = 0 | |
_C.TRAIN.EPOCHS = 300 | |
_C.TRAIN.WARMUP_EPOCHS = 20 | |
_C.TRAIN.WEIGHT_DECAY = 0.05 | |
_C.TRAIN.BASE_LR = 5e-4 | |
_C.TRAIN.WARMUP_LR = 5e-7 | |
_C.TRAIN.MIN_LR = 5e-6 | |
# Clip gradient norm | |
_C.TRAIN.CLIP_GRAD = 5.0 | |
# Auto resume from latest checkpoint | |
_C.TRAIN.AUTO_RESUME = True | |
# Gradient accumulation steps | |
# could be overwritten by command line argument | |
_C.TRAIN.ACCUMULATION_STEPS = 0 | |
# Whether to use gradient checkpointing to save memory | |
# could be overwritten by command line argument | |
_C.TRAIN.USE_CHECKPOINT = False | |
# LR scheduler | |
_C.TRAIN.LR_SCHEDULER = CN() | |
_C.TRAIN.LR_SCHEDULER.NAME = 'cosine' | |
# Epoch interval to decay LR, used in StepLRScheduler | |
_C.TRAIN.LR_SCHEDULER.DECAY_EPOCHS = 30 | |
# LR decay rate, used in StepLRScheduler | |
_C.TRAIN.LR_SCHEDULER.DECAY_RATE = 0.1 | |
# Optimizer | |
_C.TRAIN.OPTIMIZER = CN() | |
_C.TRAIN.OPTIMIZER.NAME = 'adamw' | |
# Optimizer Epsilon | |
_C.TRAIN.OPTIMIZER.EPS = 1e-8 | |
# Optimizer Betas | |
_C.TRAIN.OPTIMIZER.BETAS = (0.9, 0.999) | |
# SGD momentum | |
_C.TRAIN.OPTIMIZER.MOMENTUM = 0.9 | |
# ----------------------------------------------------------------------------- | |
# Augmentation settings | |
# ----------------------------------------------------------------------------- | |
_C.AUG = CN() | |
# Color jitter factor | |
_C.AUG.COLOR_JITTER = 0.4 | |
# Use AutoAugment policy. "v0" or "original" | |
_C.AUG.AUTO_AUGMENT = 'rand-m9-mstd0.5-inc1' | |
# Random erase prob | |
_C.AUG.REPROB = 0.25 | |
# Random erase mode | |
_C.AUG.REMODE = 'pixel' | |
# Random erase count | |
_C.AUG.RECOUNT = 1 | |
# Mixup alpha, mixup enabled if > 0 | |
_C.AUG.MIXUP = 0.8 | |
# Cutmix alpha, cutmix enabled if > 0 | |
_C.AUG.CUTMIX = 1.0 | |
# Cutmix min/max ratio, overrides alpha and enables cutmix if set | |
_C.AUG.CUTMIX_MINMAX = None | |
# Probability of performing mixup or cutmix when either/both is enabled | |
_C.AUG.MIXUP_PROB = 1.0 | |
# Probability of switching to cutmix when both mixup and cutmix enabled | |
_C.AUG.MIXUP_SWITCH_PROB = 0.5 | |
# How to apply mixup/cutmix params. Per "batch", "pair", or "elem" | |
_C.AUG.MIXUP_MODE = 'batch' | |
# ----------------------------------------------------------------------------- | |
# Testing settings | |
# ----------------------------------------------------------------------------- | |
_C.TEST = CN() | |
# Whether to use center crop when testing | |
_C.TEST.CROP = True | |
# ----------------------------------------------------------------------------- | |
# Misc | |
# ----------------------------------------------------------------------------- | |
# Mixed precision opt level, if O0, no amp is used ('O0', 'O1', 'O2') | |
# overwritten by command line argument | |
_C.AMP_OPT_LEVEL = '' | |
# Path to output folder, overwritten by command line argument | |
_C.OUTPUT = '' | |
# Tag of experiment, overwritten by command line argument | |
_C.TAG = 'default' | |
# Frequency to save checkpoint | |
_C.SAVE_FREQ = 1 | |
# Frequency to logging info | |
_C.PRINT_FREQ = 10 | |
# Fixed random seed | |
_C.SEED = 0 | |
# Perform evaluation only, overwritten by command line argument | |
_C.EVAL_MODE = False | |
# Test throughput only, overwritten by command line argument | |
_C.THROUGHPUT_MODE = False | |
# local rank for DistributedDataParallel, given by command line argument | |
_C.LOCAL_RANK = 0 | |
def _update_config_from_file(config, cfg_file): | |
config.defrost() | |
with open(cfg_file, 'r') as f: | |
yaml_cfg = yaml.load(f, Loader=yaml.FullLoader) | |
for cfg in yaml_cfg.setdefault('BASE', ['']): | |
if cfg: | |
_update_config_from_file( | |
config, os.path.join(os.path.dirname(cfg_file), cfg) | |
) | |
print('=> merge config from {}'.format(cfg_file)) | |
config.merge_from_file(cfg_file) | |
config.freeze() | |
def update_config(config, args): | |
_update_config_from_file(config, args.cfg) | |
config.defrost() | |
if args.opts: | |
config.merge_from_list(args.opts) | |
# merge from specific arguments | |
if args.batch_size: | |
config.DATA.BATCH_SIZE = args.batch_size | |
if args.zip: | |
config.DATA.ZIP_MODE = True | |
if args.cache_mode: | |
config.DATA.CACHE_MODE = args.cache_mode | |
if args.resume: | |
config.MODEL.RESUME = args.resume | |
if args.accumulation_steps: | |
config.TRAIN.ACCUMULATION_STEPS = args.accumulation_steps | |
if args.use_checkpoint: | |
config.TRAIN.USE_CHECKPOINT = True | |
if args.amp_opt_level: | |
config.AMP_OPT_LEVEL = args.amp_opt_level | |
if args.tag: | |
config.TAG = args.tag | |
if args.eval: | |
config.EVAL_MODE = True | |
if args.throughput: | |
config.THROUGHPUT_MODE = True | |
config.freeze() | |
def get_config(args): | |
"""Get a yacs CfgNode object with default values.""" | |
# Return a clone so that the defaults will not be altered | |
# This is for the "local variable" use pattern | |
config = _C.clone() | |
update_config(config, args) | |
return config | |