|
import argparse |
|
import logging |
|
import os |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from networks.vision_transformer import SwinUnet as ViT_seg |
|
from trainer import trainer_synapse |
|
from config import get_config |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--root_path', type=str, |
|
default='../data/Synapse/train_npz', help='root dir for data') |
|
parser.add_argument('--dataset', type=str, |
|
default='Synapse', help='experiment_name') |
|
parser.add_argument('--list_dir', type=str, |
|
default='./lists/lists_Synapse', help='list dir') |
|
parser.add_argument('--num_classes', type=int, |
|
default=9, help='output channel of network') |
|
parser.add_argument('--output_dir', type=str, help='output dir') |
|
parser.add_argument('--max_iterations', type=int, |
|
default=30000, help='maximum epoch number to train') |
|
parser.add_argument('--max_epochs', type=int, |
|
default=150, help='maximum epoch number to train') |
|
parser.add_argument('--batch_size', type=int, |
|
default=24, help='batch_size per gpu') |
|
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') |
|
parser.add_argument('--deterministic', type=int, default=1, |
|
help='whether use deterministic training') |
|
parser.add_argument('--base_lr', type=float, default=0.01, |
|
help='segmentation network learning rate') |
|
parser.add_argument('--img_size', type=int, |
|
default=224, help='input patch size of network input') |
|
parser.add_argument('--seed', type=int, |
|
default=1234, help='random seed') |
|
parser.add_argument('--cfg', type=str, required=True, metavar="FILE", help='path to config file', ) |
|
parser.add_argument( |
|
"--opts", |
|
help="Modify config options by adding 'KEY VALUE' pairs. ", |
|
default=None, |
|
nargs='+', |
|
) |
|
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset') |
|
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'], |
|
help='no: no cache, ' |
|
'full: cache all data, ' |
|
'part: sharding the dataset into nonoverlapping pieces and only cache one piece') |
|
parser.add_argument('--resume', help='resume from checkpoint') |
|
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps") |
|
parser.add_argument('--use-checkpoint', action='store_true', |
|
help="whether to use gradient checkpointing to save memory") |
|
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'], |
|
help='mixed precision opt level, if O0, no amp is used') |
|
parser.add_argument('--tag', help='tag of experiment') |
|
parser.add_argument('--eval', action='store_true', help='Perform evaluation only') |
|
parser.add_argument('--throughput', action='store_true', help='Test throughput only') |
|
|
|
args = parser.parse_args() |
|
if args.dataset == "Synapse": |
|
args.root_path = os.path.join(args.root_path, "train_npz") |
|
config = get_config(args) |
|
|
|
|
|
if __name__ == "__main__": |
|
if not args.deterministic: |
|
cudnn.benchmark = True |
|
cudnn.deterministic = False |
|
else: |
|
cudnn.benchmark = False |
|
cudnn.deterministic = True |
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
|
|
dataset_name = args.dataset |
|
dataset_config = { |
|
'Synapse': { |
|
'root_path': args.root_path, |
|
'list_dir': './lists/lists_Synapse', |
|
'num_classes': 9, |
|
}, |
|
} |
|
|
|
if args.batch_size != 24 and args.batch_size % 6 == 0: |
|
args.base_lr *= args.batch_size / 24 |
|
args.num_classes = dataset_config[dataset_name]['num_classes'] |
|
args.root_path = dataset_config[dataset_name]['root_path'] |
|
args.list_dir = dataset_config[dataset_name]['list_dir'] |
|
|
|
if not os.path.exists(args.output_dir): |
|
os.makedirs(args.output_dir) |
|
net = ViT_seg(config, img_size=args.img_size, num_classes=args.num_classes).cuda() |
|
net.load_from(config) |
|
|
|
trainer = {'Synapse': trainer_synapse,} |
|
trainer[dataset_name](args, net, args.output_dir) |