|
import argparse |
|
import logging |
|
import os |
|
import random |
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
from networks.vit_seg_modeling import VisionTransformer as ViT_seg |
|
from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg |
|
from trainer import trainer_synapse |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--root_path', type=str, |
|
default='../data/Synapse/train_npz', help='root dir for data') |
|
parser.add_argument('--dataset', type=str, |
|
default='Synapse', help='experiment_name') |
|
parser.add_argument('--list_dir', type=str, |
|
default='./lists/lists_Synapse', help='list dir') |
|
parser.add_argument('--num_classes', type=int, |
|
default=9, help='output channel of network') |
|
parser.add_argument('--max_iterations', type=int, |
|
default=30000, help='maximum epoch number to train') |
|
parser.add_argument('--max_epochs', type=int, |
|
default=150, help='maximum epoch number to train') |
|
parser.add_argument('--batch_size', type=int, |
|
default=24, help='batch_size per gpu') |
|
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu') |
|
parser.add_argument('--deterministic', type=int, default=1, |
|
help='whether use deterministic training') |
|
parser.add_argument('--base_lr', type=float, default=0.01, |
|
help='segmentation network learning rate') |
|
parser.add_argument('--img_size', type=int, |
|
default=224, help='input patch size of network input') |
|
parser.add_argument('--seed', type=int, |
|
default=1234, help='random seed') |
|
parser.add_argument('--n_skip', type=int, |
|
default=3, help='using number of skip-connect, default is num') |
|
parser.add_argument('--vit_name', type=str, |
|
default='R50-ViT-B_16', help='select one vit model') |
|
parser.add_argument('--vit_patches_size', type=int, |
|
default=16, help='vit_patches_size, default is 16') |
|
args = parser.parse_args() |
|
|
|
|
|
if __name__ == "__main__": |
|
if not args.deterministic: |
|
cudnn.benchmark = True |
|
cudnn.deterministic = False |
|
else: |
|
cudnn.benchmark = False |
|
cudnn.deterministic = True |
|
|
|
random.seed(args.seed) |
|
np.random.seed(args.seed) |
|
torch.manual_seed(args.seed) |
|
torch.cuda.manual_seed(args.seed) |
|
dataset_name = args.dataset |
|
dataset_config = { |
|
'Synapse': { |
|
'root_path': '../data/Synapse/train_npz', |
|
'list_dir': './lists/lists_Synapse', |
|
'num_classes': 9, |
|
}, |
|
} |
|
args.num_classes = dataset_config[dataset_name]['num_classes'] |
|
args.root_path = dataset_config[dataset_name]['root_path'] |
|
args.list_dir = dataset_config[dataset_name]['list_dir'] |
|
args.is_pretrain = True |
|
args.exp = 'TU_' + dataset_name + str(args.img_size) |
|
snapshot_path = "../model/{}/{}".format(args.exp, 'TU') |
|
snapshot_path = snapshot_path + '_pretrain' if args.is_pretrain else snapshot_path |
|
snapshot_path += '_' + args.vit_name |
|
snapshot_path = snapshot_path + '_skip' + str(args.n_skip) |
|
snapshot_path = snapshot_path + '_vitpatch' + str(args.vit_patches_size) if args.vit_patches_size!=16 else snapshot_path |
|
snapshot_path = snapshot_path+'_'+str(args.max_iterations)[0:2]+'k' if args.max_iterations != 30000 else snapshot_path |
|
snapshot_path = snapshot_path + '_epo' +str(args.max_epochs) if args.max_epochs != 30 else snapshot_path |
|
snapshot_path = snapshot_path+'_bs'+str(args.batch_size) |
|
snapshot_path = snapshot_path + '_lr' + str(args.base_lr) if args.base_lr != 0.01 else snapshot_path |
|
snapshot_path = snapshot_path + '_'+str(args.img_size) |
|
snapshot_path = snapshot_path + '_s'+str(args.seed) if args.seed!=1234 else snapshot_path |
|
|
|
if not os.path.exists(snapshot_path): |
|
os.makedirs(snapshot_path) |
|
config_vit = CONFIGS_ViT_seg[args.vit_name] |
|
config_vit.n_classes = args.num_classes |
|
config_vit.n_skip = args.n_skip |
|
if args.vit_name.find('R50') != -1: |
|
config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size)) |
|
net = ViT_seg(config_vit, img_size=args.img_size, num_classes=config_vit.n_classes).cuda() |
|
net.load_from(weights=np.load(config_vit.pretrained_path)) |
|
|
|
trainer = {'Synapse': trainer_synapse,} |
|
trainer[dataset_name](args, net, snapshot_path) |