Tianyinus's picture
init submit
edcf5ee verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_, DropPath
import pdb
__all__ = [
'ConvNormAct',
'SingleConv',
'BasicBlock',
'Bottleneck',
'DepthwiseSeparableConv',
'SEBlock',
'DropPath',
'MBConv',
'FusedMBConv',
'ConvNeXtBlock',
'LayerNorm'
]
class ConvNormAct(nn.Module):
"""
Layer grouping a convolution, normalization and activation funtion
normalization includes BN and IN
"""
def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=0,
groups=1, dilation=1, bias=False, norm=nn.BatchNorm2d, act=nn.ReLU, preact=False):
super().__init__()
assert norm in [nn.BatchNorm2d, nn.InstanceNorm2d, True, False]
assert act in [nn.ReLU, nn.ReLU6, nn.GELU, nn.SiLU, True, False]
self.conv = nn.Conv2d(
in_channels=in_ch,
out_channels=out_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
dilation=dilation,
bias=bias
)
if preact:
self.norm = norm(in_ch) if norm else nn.Identity()
else:
self.norm = norm(out_ch) if norm else nn.Identity()
self.act = act() if act else nn.Identity()
self.preact = preact
def forward(self, x):
if self.preact:
out = self.conv(self.act(self.norm(x))) # norm relu conv
else:
out = self.act(self.norm(self.conv(x))) # conv norm relu
return out
class SingleConv(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, norm=nn.BatchNorm2d, act=nn.ReLU, preact=False):
super().__init__()
assert norm in [nn.BatchNorm2d, nn.InstanceNorm2d, LayerNorm, True, False]
assert act in [nn.ReLU, nn.ReLU6, nn.GELU, nn.SiLU, True, False]
self.conv = ConvNormAct(in_ch, out_ch, 3, stride=stride, padding=1, norm=norm, act=act, preact=preact)
def forward(self, x):
return self.conv(x)
class BasicBlock(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, norm=nn.BatchNorm2d, act=nn.ReLU, preact=True):
super().__init__()
assert norm in [nn.BatchNorm2d, nn.InstanceNorm2d, True, False]
assert act in [nn.ReLU, nn.ReLU6, nn.GELU, nn.SiLU, True, False]
self.conv1 = ConvNormAct(in_ch, out_ch, 3, stride=stride, padding=1, norm=norm, act=act, preact=preact)
self.conv2 = ConvNormAct(out_ch, out_ch, 3, stride=1, padding=1, norm=norm, act=act, preact=preact)
self.shortcut = nn.Sequential()
if stride != 1 or in_ch != out_ch: # 如果不相等就通过一层conv将残差改变
self.shortcut = ConvNormAct(in_ch, out_ch, 3, stride=stride, padding=1, norm=norm, act=act, preact=preact)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
out += self.shortcut(residual)
return out
class Bottleneck(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, groups=1, dilation=1, norm=nn.BatchNorm2d, act=nn.ReLU, preact=True):
super().__init__()
assert norm in [nn.BatchNorm2d, nn.InstanceNorm2d, True, False]
assert act in [nn.ReLU, nn.ReLU6, nn.GELU, nn.SiLU, True, False]
self.expansion = 4
self.conv1 = ConvNormAct(in_ch, out_ch//self.expansion, 1, stride=1, padding=0, norm=norm, act=act, preact=preact)
self.conv2 = ConvNormAct(out_ch//self.expansion, out_ch//self.expansion, 3, stride=stride, padding=1, norm=norm, act=act, groups=groups, dilation=dilation, preact=preact)
self.conv3 = ConvNormAct(out_ch//self.expansion, out_ch, 1, stride=1, padding=0, norm=norm, act=act, preact=preact)
self.shortcut = nn.Sequential()
if stride != 1 or in_ch != out_ch:
self.shortcut = ConvNormAct(in_ch, out_ch, 3, stride=stride, padding=1, norm=norm, act=act, preact=preact)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
out += self.shortcut(residual)
return out
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_ch, out_ch, stride=1, kernel_size=3, padding=1, bias=False):
super().__init__()
self.depthwise = nn.Conv2d(
in_channels=in_ch,
out_channels=in_ch,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=in_ch,
bias=bias
)
self.pointwise = nn.Conv2d(
in_channels=in_ch,
out_channels=out_ch,
kernel_size=1,
stride=1,
padding=0,
groups=1,
bias=bias
)
def forward(self, x):
out = self.depthwise(x)
out = self.pointwise(out)
return out
class SEBlock(nn.Module):
def __init__(self, in_ch, ratio=4, act=nn.ReLU):
super().__init__()
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Conv2d(in_ch, in_ch//ratio, kernel_size=1),
act(),
nn.Conv2d(in_ch//ratio, in_ch, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
out = self.squeeze(x)
out = self.excitation(out)
return x * out
class DropPath(nn.Module):
"""
Drop connection with pobability p
"""
def __init__(self, p=0):
super().__init__()
self.p = p
def forward(self, x):
if (not self.p) or (not self.training):
return x
batch_size = x.shape[0]
random_tensor = torch.rand(batch_size, 1, 1, 1).to(x.device)
binary_mask = self.p < random_tensor
x = x.div(1 - self.p)
x = x * binary_mask
return x
class MBConv(nn.Module):
"""
MBConv with an expansion factor of N, and squeeze-and-excitation module
"""
def __init__(self, in_ch, out_ch, expansion=4, kernel_size=3, stride=1, ratio=4, p=0, se=True, norm=nn.BatchNorm2d, act=nn.ReLU):
super().__init__()
padding = (kernel_size - 1) // 2
expanded = expansion * in_ch
self.se = se
self.expand_proj = nn.Identity() if (expansion==1) else ConvNormAct(in_ch, expanded, kernel_size=1, norm=norm, act=act, preact=True)
self.depthwise = ConvNormAct(expanded, expanded, kernel_size=kernel_size, stride=stride, padding=padding, groups=expanded, act=act, norm=norm, preact=True)
if self.se:
self.se_block = SEBlock(expanded, ratio=ratio)
self.pointwise = ConvNormAct(expanded, out_ch, kernel_size=1, padding=0, norm=norm, act=False, preact=True)
self.drop_path = DropPath(p)
self.shortcut = nn.Sequential()
if in_ch != out_ch or stride != 1:
self.shortcut = nn.Sequential(ConvNormAct(in_ch, out_ch, kernel_size, stride=stride, padding=padding, norm=False, act=False))
def forward(self, x):
residual = x
x = self.expand_proj(x)
x = self.depthwise(x)
if self.se:
x = self.se_block(x)
x = self.pointwise(x)
x = self.drop_path(x)
x = x + self.shortcut(residual)
return x
class FusedMBConv(nn.Module):
"""
MBConv with an expansion factor of N, and squeeze-and-excitation module
"""
def __init__(self, in_ch, out_ch, expansion=4, kernel_size=3, stride=1, ratio=4, p=0, se=True, norm=nn.BatchNorm2d, act=nn.ReLU):
super().__init__()
padding = (kernel_size - 1) // 2
expanded = expansion * in_ch
self.stride = stride
self.se = se
self.conv3x3 = ConvNormAct(in_ch, expanded, kernel_size=kernel_size, stride=stride, padding=padding, groups=1, norm=norm, act=act, preact=True)
if self.se:
self.se_block = SEBlock(expanded, ratio=ratio)
self.pointwise = ConvNormAct(expanded, out_ch, kernel_size=1, padding=0, norm=norm, act=False, preact=True)
self.drop_path = DropPath(p)
self.shortcut = nn.Sequential()
if in_ch != out_ch or stride != 1:
self.shortcut = nn.Sequential(ConvNormAct(in_ch, out_ch, 3, stride=stride, padding=1, norm=False, act=False))
def forward(self, x):
residual = x
x = self.conv3x3(x)
if self.se:
x = self.se_block(x)
x = self.pointwise(x)
x = self.drop_path(x)
x = x + self.shortcut(residual)
return x
class ConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, out_ch, stride=1, kernel_size=7, norm=None, act=None, preact=None, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
padding = kernel_size // 2
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, padding=padding, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
if __name__ == '__main__':
img = torch.randn(2, 3, 256, 256)
depth_conv = DepthwiseSeparableConv(3, 32)
out = depth_conv(img)
print(out.shape)