|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
from .utnetv2_utils import Down_block, Up_block, inconv, SemanticMapFusion |
|
import pdb |
|
|
|
from .conv_layers import BasicBlock, Bottleneck, SingleConv, MBConv, FusedMBConv, ConvNeXtBlock |
|
|
|
def get_block(name): |
|
block_map = { |
|
'SingleConv': SingleConv, |
|
'BasicBlock': BasicBlock, |
|
'Bottleneck': Bottleneck, |
|
'MBConv': MBConv, |
|
'FusedMBConv': FusedMBConv, |
|
'ConvNeXtBlock': ConvNeXtBlock |
|
} |
|
return block_map[name] |
|
|
|
|
|
class UTNetV2(nn.Module): |
|
|
|
def __init__(self, in_chan, num_classes, base_chan=32, map_size=8, conv_block='BasicBlock', conv_num=[2,1,0,0, 0,1,2,2], trans_num=[0,1,2,2, 2,1,0,0], num_heads=[1,4,8,16, 8,4,1,1], fusion_depth=2, fusion_dim=512, fusion_heads=16, expansion=4, attn_drop=0., proj_drop=0., proj_type='depthwise', norm=nn.BatchNorm2d, act=nn.GELU): |
|
super().__init__() |
|
|
|
|
|
chan_num = [2*base_chan, 4*base_chan, 8*base_chan, 16*base_chan, |
|
8*base_chan, 4*base_chan, 2*base_chan, base_chan] |
|
dim_head = [chan_num[i]//num_heads[i] for i in range(8)] |
|
conv_block = get_block(conv_block) |
|
|
|
|
|
self.inc = inconv(in_chan, base_chan, norm=norm, act=act) |
|
self.down1 = Down_block(base_chan, chan_num[0], conv_num[0], trans_num[0], conv_block, norm=norm, act=act, map_generate=False, map_proj=False) |
|
|
|
|
|
|
|
self.down2 = Down_block(chan_num[0], chan_num[1], conv_num[1], trans_num[1], conv_block, heads=num_heads[1], dim_head=dim_head[1], expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act, map_generate=True, map_proj=False) |
|
self.down3 = Down_block(chan_num[1], chan_num[2], conv_num[2], trans_num[2], conv_block, heads=num_heads[2], dim_head=dim_head[2], expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act, map_generate=False, map_proj=True) |
|
self.down4 = Down_block(chan_num[2], chan_num[3], conv_num[3], trans_num[3], conv_block, heads=num_heads[3], dim_head=dim_head[3], expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act, map_generate=False, map_proj=True) |
|
|
|
|
|
self.map_fusion = SemanticMapFusion(chan_num[1:4], fusion_dim, fusion_heads, depth=fusion_depth, norm=norm) |
|
|
|
|
|
self.up1 = Up_block(chan_num[3], chan_num[4], conv_num[4], trans_num[4], conv_block, heads=num_heads[4], dim_head=dim_head[4], expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act, map_shortcut=True) |
|
self.up2 = Up_block(chan_num[4], chan_num[5], conv_num[5], trans_num[5], conv_block, heads=num_heads[5], dim_head=dim_head[5], expansion=expansion, attn_drop=attn_drop, proj_drop=proj_drop, map_size=map_size, proj_type=proj_type, norm=norm, act=act, map_shortcut=True) |
|
|
|
|
|
self.up3 = Up_block(chan_num[5], chan_num[6], conv_num[6], trans_num[6], conv_block, norm=norm, act=act, map_shortcut=False) |
|
self.up4 = Up_block(chan_num[6], chan_num[7], conv_num[7], trans_num[7], conv_block, norm=norm, act=act, map_shortcut=False) |
|
|
|
|
|
self.outc = nn.Conv2d(chan_num[7], num_classes, kernel_size=1) |
|
|
|
def forward(self, x): |
|
|
|
x0 = self.inc(x) |
|
x1, _ = self.down1(x0) |
|
x2, map2 = self.down2(x1, None) |
|
x3, map3 = self.down3(x2, map2) |
|
x4, map4 = self.down4(x3, map3) |
|
|
|
map_list = [map2, map3, map4] |
|
map_list = self.map_fusion(map_list) |
|
|
|
out, semantic_map = self.up1(x4, x3, map_list[2], map_list[1]) |
|
out, semantic_map = self.up2(out, x2, semantic_map, map_list[0]) |
|
out, semantic_map = self.up3(out, x1, semantic_map, None) |
|
out, semantic_map = self.up4(out, x0, semantic_map, None) |
|
|
|
out = self.outc(out) |
|
|
|
return out |
|
|
|
|