|
""" |
|
Training Engine Script ver: Feb 8th 16:00 |
|
|
|
Based on MAE code. |
|
https://github.com/facebookresearch/mae |
|
|
|
""" |
|
|
|
import math |
|
import sys |
|
from typing import Iterable |
|
import os |
|
import torch |
|
from torchvision.transforms import ToPILImage |
|
import SSL_structures.misc as misc |
|
import utils.schedulers as lr_sched |
|
from utils.visual_usage import unpatchify, patchify, Draw_tri_fig |
|
|
|
|
|
def train_one_epoch(model: torch.nn.Module, |
|
data_loader: Iterable, optimizer: torch.optim.Optimizer, |
|
device: torch.device, epoch: int, loss_scaler, fix_position_ratio_scheduler=None, |
|
puzzle_patch_size_scheduler=None, check_samples=1, print_freq=20, log_writer=None, args=None): |
|
model.train(True) |
|
|
|
|
|
metric_logger = misc.MetricLogger(delimiter=" ") |
|
|
|
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) |
|
|
|
header = 'Epoch: [{}]'.format(epoch) |
|
|
|
accum_iter = args.accum_iter |
|
|
|
optimizer.zero_grad() |
|
|
|
if log_writer is not None: |
|
print('log_dir: {}'.format(args.log_dir)) |
|
|
|
|
|
for data_iter_step, (samples, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)): |
|
|
|
|
|
|
|
if data_iter_step % accum_iter == 0: |
|
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args) |
|
|
|
|
|
samples = samples.to(device, non_blocking=True) |
|
|
|
with torch.cuda.amp.autocast(): |
|
|
|
if fix_position_ratio_scheduler is not None and puzzle_patch_size_scheduler is not None: |
|
fix_position_ratio = fix_position_ratio_scheduler(epoch) |
|
puzzle_patch_size = puzzle_patch_size_scheduler(epoch) |
|
else: |
|
fix_position_ratio = None |
|
puzzle_patch_size = None |
|
|
|
if args.model[0:3] == 'sae': |
|
loss, pred, imgs_puzzled_patches = model(samples, fix_position_ratio=fix_position_ratio, |
|
puzzle_patch_size=puzzle_patch_size) |
|
else: |
|
loss, pred, mask_patch_indicators = model(samples, mask_ratio=args.mask_ratio) |
|
|
|
if args.DDP_distributed: |
|
loss_value = loss.item() |
|
else: |
|
loss_value = float(loss.cpu().detach().numpy()) \ |
|
if torch.cuda.device_count() == 1 else sum(loss.cpu().detach().numpy()) |
|
|
|
if not math.isfinite(loss_value): |
|
print("Loss is {}, stopping training".format(loss_value)) |
|
sys.exit(1) |
|
|
|
loss = loss / accum_iter |
|
|
|
|
|
loss_scaler(loss, optimizer, parameters=model.parameters(), |
|
update_grad=(data_iter_step + 1) % accum_iter == 0) |
|
|
|
if (data_iter_step + 1) % accum_iter == 0: |
|
optimizer.zero_grad() |
|
|
|
torch.cuda.synchronize() |
|
|
|
|
|
metric_logger.update(loss=loss_value) |
|
lr = optimizer.param_groups[0]["lr"] |
|
metric_logger.update(lr=lr) |
|
|
|
|
|
loss_value_reduce = misc.all_reduce_mean(loss_value) |
|
|
|
if log_writer is not None: |
|
log_writer.add_scalar('train_loss', loss_value_reduce, epoch) |
|
log_writer.add_scalar('lr', lr, epoch) |
|
|
|
if fix_position_ratio is not None and puzzle_patch_size is not None: |
|
log_writer.add_scalar('puzzle_patch_size', puzzle_patch_size, epoch) |
|
log_writer.add_scalar('fix_position_ratio', fix_position_ratio, epoch) |
|
|
|
|
|
metric_logger.synchronize_between_processes() |
|
if fix_position_ratio is not None and puzzle_patch_size is not None: |
|
print("Averaged stats:", metric_logger, 'fix_position_ratio:', fix_position_ratio, |
|
' puzzle_patch_size:', puzzle_patch_size) |
|
else: |
|
print("Averaged stats:", metric_logger) |
|
|
|
|
|
if args.model[0:3] == 'sae': |
|
imgs_puzzled_batch = unpatchify(imgs_puzzled_patches, patch_size=16) |
|
else: |
|
sample_img_patches = patchify(samples, patch_size=16) |
|
masked_img_patches = sample_img_patches * \ |
|
mask_patch_indicators.unsqueeze(-1).expand(-1, -1, |
|
sample_img_patches.shape[-1]) |
|
masked_img_batch = unpatchify(masked_img_patches, patch_size=16) |
|
|
|
|
|
if misc.is_main_process(): |
|
for sampleIDX in range(check_samples): |
|
|
|
sample_img = samples.cpu()[sampleIDX] |
|
sample_img = ToPILImage()(sample_img) |
|
sample_img.save(os.path.join(args.output_dir, 'figs', 'sample_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg')) |
|
|
|
recons_img_batch = unpatchify(pred, patch_size=16) |
|
recons_img = recons_img_batch.cpu()[sampleIDX] |
|
recons_img = ToPILImage()(recons_img) |
|
recons_img.save(os.path.join(args.output_dir, 'figs', 'recons_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg')) |
|
|
|
if args.model[0:3] == 'sae': |
|
puzzled_img = imgs_puzzled_batch.cpu()[sampleIDX] |
|
puzzled_img = ToPILImage()(puzzled_img) |
|
puzzled_img.save(os.path.join(args.output_dir, 'figs', 'puzzled_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg')) |
|
|
|
picpath = os.path.join(args.output_dir, 'figs', 'puzzled_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg') |
|
Draw_tri_fig(sample_img, puzzled_img, recons_img, picpath) |
|
|
|
else: |
|
masked_img = masked_img_batch.cpu()[sampleIDX] |
|
masked_img = ToPILImage()(masked_img) |
|
masked_img.save(os.path.join(args.output_dir, 'figs', 'masked_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg')) |
|
|
|
picpath = os.path.join(args.output_dir, 'figs', 'masked_e_' + str(epoch) |
|
+ '_sampleIDX_' + str(sampleIDX) + '.jpg') |
|
Draw_tri_fig(sample_img, masked_img, recons_img, picpath) |
|
|
|
|
|
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} |
|
|