|
import numpy as np |
|
from pytorch_grad_cam.base_cam import BaseCAM |
|
|
|
|
|
|
|
|
|
class GradCAMPlusPlus(BaseCAM): |
|
def __init__(self, model, target_layers, use_cuda=False, |
|
reshape_transform=None): |
|
super(GradCAMPlusPlus, self).__init__(model, target_layers, use_cuda, |
|
reshape_transform) |
|
|
|
def get_cam_weights(self, |
|
input_tensor, |
|
target_layers, |
|
target_category, |
|
activations, |
|
grads): |
|
grads_power_2 = grads**2 |
|
grads_power_3 = grads_power_2 * grads |
|
|
|
sum_activations = np.sum(activations, axis=(2, 3)) |
|
eps = 0.000001 |
|
aij = grads_power_2 / (2 * grads_power_2 + |
|
sum_activations[:, :, None, None] * grads_power_3 + eps) |
|
|
|
|
|
aij = np.where(grads != 0, aij, 0) |
|
|
|
weights = np.maximum(grads, 0) * aij |
|
weights = np.sum(weights, axis=(2, 3)) |
|
return weights |
|
|