""" pre-training funcs Script ver: Feb 8th 16:00 有修改loss backward """ import builtins import datetime import os import time from collections import defaultdict, deque from pathlib import Path import torch import torch.distributed as dist try: from torch import inf except: from torch._six import inf # SmoothedValue operator class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) # SmoothedValue operator self.delimiter = delimiter def update(self, **kwargs): # 更新内容字典 for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): # 报错 if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): # 转换为str给print loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): # 多进程同步 for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): # 新增一个indicator元素 self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): # warp minibatch # 初始化迭代idx i = 0 # 初始化头文件 if not header: header = '' # 初始化计时 start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' # 初始化输出 log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) # 缩进 MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj # 生成迭代的下一个对象 iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: # 估算时间 eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) # 输出 if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ builtin_print = builtins.print def print(*args, **kwargs): force = kwargs.pop('force', False) force = force or (get_world_size() > 8) if is_master or force: now = datetime.datetime.now().time() builtin_print('[{}] '.format(now), end='') # print with time stamp builtin_print(*args, **kwargs) builtins.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): """ 配置多服务器环境文件信息,安排args.DDP_distributed :param args: :return: """ if args.dist_on_itp: args.rank = int(os.environ['OMPI_COMM_WORLD_RANK']) args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) os.environ['LOCAL_RANK'] = str(args.gpu) os.environ['RANK'] = str(args.rank) os.environ['WORLD_SIZE'] = str(args.world_size) # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"] elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() else: print('Not using DDP_distributed mode') setup_for_distributed(is_master=True) # hack args.DDP_distributed = False return args.DDP_distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('| DDP_distributed init (rank {}): {}, gpu {}'.format( args.rank, args.dist_url, args.gpu), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) class NativeScalerWithGradNormCount: """ 定义的 loss 优化器 基于自动混合精度训练设置的loss_scaler,额外增加了梯度裁剪的功能 """ state_dict_key = "amp_scaler" def __init__(self, GPU_count=1, DDP_distributed=False): self._scaler = torch.cuda.amp.GradScaler() self.GPU_count = GPU_count self.DDP_distributed=DDP_distributed def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): # 反传 if self.DDP_distributed: loss = loss.unsqueeze(-1) self._scaler.scale(loss).backward(loss, create_graph=create_graph) # create_graph else: if self.GPU_count == 1: # only one GPU loss = loss.unsqueeze(-1) # fixme 加了expand解决梯度标量问题,原本设计为了多卡,多卡有形状,单卡变没有形状的标量了 # fixme 加了ones_like不知道为啥存在, 可能原本是分布式多个word self._scaler.scale(loss).backward(torch.ones_like(loss), create_graph=create_graph) # create_graph if update_grad: # 梯度裁剪 if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) # 使用optimizer更新模型 self._scaler.update() else: norm = None return norm def state_dict(self): # 记录loss_scaler的state_dict,应该就是保存梯度 return self._scaler.state_dict() def load_state_dict(self, state_dict): # 还原某个checkpoint的state_dict self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] # 确定需要梯度的模型参数 parameters = [p for p in parameters if p.grad is not None] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) # 从对应GPU上进行操作 device = parameters[0].grad.device if norm_type == inf: # 面对norm_type == inf爆炸值,保留 total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) else: # 无norm_type == inf爆炸值,做norm total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, model_idx='SAE_'): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / (model_idx+'_checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, # 保存配置参数,但是在加载的时候不加载 } save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def load_model(args, model_without_ddp, optimizer, loss_scaler): # 加载配置checkpoint的路径args.resume,默认没有则不加载 if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): optimizer.load_state_dict(checkpoint['optimizer']) args.start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") # 计算平均在单卡上的loss def all_reduce_mean(x): world_size = get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x