import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class DynamicPosBias(nn.Module): def __init__(self, dim, num_heads, residual): super().__init__() self.residual = residual self.num_heads = num_heads self.pos_dim = dim // 4 self.pos_proj = nn.Linear(2, self.pos_dim) self.pos1 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.pos_dim), ) self.pos2 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.pos_dim) ) self.pos3 = nn.Sequential( nn.LayerNorm(self.pos_dim), nn.ReLU(inplace=True), nn.Linear(self.pos_dim, self.num_heads) ) def forward(self, biases): if self.residual: pos = self.pos_proj(biases) # 2Wh-1 * 2Ww-1, heads pos = pos + self.pos1(pos) pos = pos + self.pos2(pos) pos = self.pos3(pos) else: pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases)))) return pos def flops(self, N): flops = N * 2 * self.pos_dim flops += N * self.pos_dim * self.pos_dim flops += N * self.pos_dim * self.pos_dim flops += N * self.pos_dim * self.num_heads return flops class Attention(nn.Module): r""" Multi-head self attention module with dynamic position bias. Args: dim (int): Number of input channels. group_size (tuple[int]): The height and width of the group. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, group_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0., position_bias=True): super().__init__() self.dim = dim self.group_size = group_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.position_bias = position_bias if position_bias: self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False) # generate mother-set position_bias_h = torch.arange(1 - self.group_size[0], self.group_size[0]) position_bias_w = torch.arange(1 - self.group_size[1], self.group_size[1]) biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w])) # 2, 2Wh-1, 2W2-1 biases = biases.flatten(1).transpose(0, 1).float() self.register_buffer("biases", biases) # get pair-wise relative position index for each token inside the group coords_h = torch.arange(self.group_size[0]) coords_w = torch.arange(self.group_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.group_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.group_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.group_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_groups*B, N, C) mask: (0/-inf) mask with shape of (num_groups, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.position_bias: pos = self.pos(self.biases) # 2Wh-1 * 2Ww-1, heads # select position bias relative_position_bias = pos[self.relative_position_index.view(-1)].view( self.group_size[0] * self.group_size[1], self.group_size[0] * self.group_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, group_size={self.group_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 group with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim if self.position_bias: flops += self.pos.flops(N) return flops class CrossFormerBlock(nn.Module): r""" CrossFormer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. group_size (int): Group size. lsda_flag (int): use SDA or LDA, 0 for SDA and 1 for LDA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, group_size=7, lsda_flag=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, num_patch_size=1): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.group_size = group_size self.lsda_flag = lsda_flag self.mlp_ratio = mlp_ratio self.num_patch_size = num_patch_size if min(self.input_resolution) <= self.group_size: # if group size is larger than input resolution, we don't partition groups self.lsda_flag = 0 self.group_size = min(self.input_resolution) self.norm1 = norm_layer(dim) self.attn = Attention( dim, group_size=to_2tuple(self.group_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, position_bias=True) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size %d, %d, %d" % (L, H, W) shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # group embeddings G = self.group_size if self.lsda_flag == 0: # 0 for SDA x = x.reshape(B, H // G, G, W // G, G, C).permute(0, 1, 3, 2, 4, 5) else: # 1 for LDA x = x.reshape(B, G, H // G, G, W // G, C).permute(0, 2, 4, 1, 3, 5) x = x.reshape(B * H * W // G**2, G**2, C) # multi-head self-attention x = self.attn(x, mask=self.attn_mask) # nW*B, G*G, C # ungroup embeddings x = x.reshape(B, H // G, W // G, G, G, C) if self.lsda_flag == 0: x = x.permute(0, 1, 3, 2, 4, 5).reshape(B, H, W, C) else: x = x.permute(0, 3, 1, 4, 2, 5).reshape(B, H, W, C) x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"group_size={self.group_size}, lsda_flag={self.lsda_flag}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # LSDA nW = H * W / self.group_size / self.group_size flops += nW * self.attn.flops(self.group_size * self.group_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm, patch_size=[2], num_input_patch_size=1): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reductions = nn.ModuleList() self.patch_size = patch_size self.norm = norm_layer(dim) for i, ps in enumerate(patch_size): if i == len(patch_size) - 1: out_dim = 2 * dim // 2 ** i else: out_dim = 2 * dim // 2 ** (i + 1) stride = 2 padding = (ps - stride) // 2 self.reductions.append(nn.Conv2d(dim, out_dim, kernel_size=ps, stride=stride, padding=padding)) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = self.norm(x) x = x.view(B, H, W, C).permute(0, 3, 1, 2) xs = [] for i in range(len(self.reductions)): tmp_x = self.reductions[i](x).flatten(2).transpose(1, 2) xs.append(tmp_x) x = torch.cat(xs, dim=2) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim for i, ps in enumerate(self.patch_size): if i == len(self.patch_size) - 1: out_dim = 2 * self.dim // 2 ** i else: out_dim = 2 * self.dim // 2 ** (i + 1) flops += (H // 2) * (W // 2) * ps * ps * out_dim * self.dim return flops class Stage(nn.Module): """ CrossFormer blocks for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. group_size (int): variable G in the paper, one group has GxG embeddings mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, group_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, patch_size_end=[4], num_patch_size=None): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList() for i in range(depth): lsda_flag = 0 if (i % 2 == 0) else 1 self.blocks.append(CrossFormerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, group_size=group_size, lsda_flag=lsda_flag, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, num_patch_size=num_patch_size)) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer, patch_size=patch_size_end, num_input_patch_size=num_patch_size) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: [4]. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=[4], in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) # patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[0] // patch_size[0]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.projs = nn.ModuleList() for i, ps in enumerate(patch_size): if i == len(patch_size) - 1: dim = embed_dim // 2 ** i else: dim = embed_dim // 2 ** (i + 1) stride = patch_size[0] padding = (ps - patch_size[0]) // 2 self.projs.append(nn.Conv2d(in_chans, dim, kernel_size=ps, stride=stride, padding=padding)) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." xs = [] for i in range(len(self.projs)): tx = self.projs[i](x).flatten(2).transpose(1, 2) xs.append(tx) # B Ph*Pw C x = torch.cat(xs, dim=2) if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = 0 for i, ps in enumerate(self.patch_size): if i == len(self.patch_size) - 1: dim = self.embed_dim // 2 ** i else: dim = self.embed_dim // 2 ** (i + 1) flops += Ho * Wo * dim * self.in_chans * (self.patch_size[i] * self.patch_size[i]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class CrossFormer(nn.Module): r""" CrossFormer A PyTorch impl of : `CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention` - Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each stage. num_heads (tuple(int)): Number of attention heads in different layers. group_size (int): Group size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=[4], in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], group_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, merge_size=[[2], [2], [2]], **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() num_patch_sizes = [len(patch_size)] + [len(m) for m in merge_size] for i_layer in range(self.num_layers): patch_size_end = merge_size[i_layer] if i_layer < self.num_layers - 1 else None num_patch_size = num_patch_sizes[i_layer] layer = Stage(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], group_size=group_size[i_layer], mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, patch_size_end=patch_size_end, num_patch_size=num_patch_size) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops class cross_former_cls_head_warp(nn.Module): def __init__(self, backbone, num_classes): super().__init__() embed_dim = 96 depths = [2, 2, 18, 2] num_layers = len(depths) num_features = int(embed_dim * 2 ** (num_layers - 1)) self.backbone = backbone self.head = nn.Linear(num_features, num_classes) def forward(self, x): x = self.backbone(x) x = self.head(x) return x