File size: 2,214 Bytes
8cf2499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70ad200
8cf2499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
base_model: microsoft/dit-base-finetuned-rvlcdip
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dit-base-rvlcdip-finetuned-grp-actual
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7575757575757576
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base-rvlcdip-finetuned-grp-actual

This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3033
- Accuracy: 0.7576

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.3577        | 0.96  | 18   | 2.0863          | 0.5114   |
| 2.0601        | 1.97  | 37   | 1.8154          | 0.6477   |
| 1.8068        | 2.99  | 56   | 1.5881          | 0.6705   |
| 1.5953        | 4.0   | 75   | 1.4112          | 0.7159   |
| 1.4304        | 4.96  | 93   | 1.3033          | 0.7576   |
| 1.3458        | 5.97  | 112  | 1.2401          | 0.75     |
| 1.3523        | 6.72  | 126  | 1.2240          | 0.7576   |


### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3