--- base_model: microsoft/dit-base-finetuned-rvlcdip tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dit-base-rvlcdip-finetuned-grp-actual results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7575757575757576 --- # dit-base-rvlcdip-finetuned-grp-actual This model is a fine-tuned version of [microsoft/dit-base-finetuned-rvlcdip](https://huggingface.co/microsoft/dit-base-finetuned-rvlcdip) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3033 - Accuracy: 0.7576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3577 | 0.96 | 18 | 2.0863 | 0.5114 | | 2.0601 | 1.97 | 37 | 1.8154 | 0.6477 | | 1.8068 | 2.99 | 56 | 1.5881 | 0.6705 | | 1.5953 | 4.0 | 75 | 1.4112 | 0.7159 | | 1.4304 | 4.96 | 93 | 1.3033 | 0.7576 | | 1.3458 | 5.97 | 112 | 1.2401 | 0.75 | | 1.3523 | 6.72 | 126 | 1.2240 | 0.7576 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3