TiffanyTiffany
commited on
Commit
·
b414a28
1
Parent(s):
1ea28dc
trainind complete
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the wnut_17 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -79,9 +79,9 @@ The following hyperparameters were used during training:
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
-
| No log | 1.0 | 425 | 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
|
86 |
|
87 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.656957928802589
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.48564593301435405
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.5584594222833563
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.933951453276383
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [Babelscape/wikineural-multilingual-ner](https://huggingface.co/Babelscape/wikineural-multilingual-ner) on the wnut_17 dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.3577
|
48 |
+
- Precision: 0.6570
|
49 |
+
- Recall: 0.4856
|
50 |
+
- F1: 0.5585
|
51 |
+
- Accuracy: 0.9340
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 425 | 0.3191 | 0.6465 | 0.4091 | 0.5011 | 0.9273 |
|
83 |
+
| 0.1595 | 2.0 | 850 | 0.3320 | 0.6719 | 0.4629 | 0.5482 | 0.9316 |
|
84 |
+
| 0.0681 | 3.0 | 1275 | 0.3577 | 0.6570 | 0.4856 | 0.5585 | 0.9340 |
|
85 |
|
86 |
|
87 |
### Framework versions
|