File size: 2,962 Bytes
2ec4f4e 2df5ed7 b569638 2ec4f4e b569638 2ec4f4e 2df5ed7 698531f 2df5ed7 698531f 2df5ed7 698531f 2df5ed7 698531f 2df5ed7 2ec4f4e 2df5ed7 2ec4f4e 2df5ed7 698531f 2df5ed7 2ec4f4e 2df5ed7 2ec4f4e 2df5ed7 698531f 4617a97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: apache-2.0
language:
- zh
- en
---
<div style="width: 100%;">
<p align="center" width="20%">
<img src="http://x-pai.algolet.com/bot/img/logo_core.png" alt="TigerBot" width="20%", style="display: block; margin: auto;"></img>
</p>
</div>
<p align="center">
<font face="黑体" size=5"> A cutting-edge foundation for your very own LLM. </font>
</p>
<p align="center">
💻<a href="https://github.com/TigerResearch/TigerBot" target="_blank">Github</a> • 🌐 <a href="https://tigerbot.com/" target="_blank">TigerBot</a> • 🤗 <a href="https://huggingface.co/TigerResearch" target="_blank">Hugging Face</a>
</p>
# 快速开始
- 方法1,通过transformers使用
- 下载 TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- 启动infer代码
```shell
python infer.py --model_path TigerResearch/tigerbot-13b-base-v2 --model_type base
```
- 方法2:
- 下载 TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- 安装git lfs: `git lfs install`
- 通过huggingface或modelscope平台下载权重
```shell
git clone https://huggingface.co/TigerResearch/tigerbot-13b-base-v2
git clone https://www.modelscope.cn/TigerResearch/tigerbot-13b-base-v2.git
```
- 启动infer代码
```shell
python infer.py --model_path tigerbot-13b-base-v2 --model_type base --max_generate_length 64
```
------
# Quick Start
- Method 1, use through transformers
- Clone TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- Run infer script
```shell
python infer.py --model_path TigerResearch/tigerbot-13b-base-v2 --model_type base
```
- Method 2:
- Clone TigerBot Repo
```shell
git clone https://github.com/TigerResearch/TigerBot.git
```
- install git lfs: `git lfs install`
- Download weights from huggingface or modelscope
```shell
git clone https://huggingface.co/TigerResearch/tigerbot-13b-base-v2
git clone https://www.modelscope.cn/TigerResearch/tigerbot-13b-base-v2.git
```
- Run infer script
```shell
python infer.py --model_path tigerbot-13b-base-v2 --model_type base --max_generate_length 64
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TigerResearch__tigerbot-13b-base)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 52.11 |
| ARC (25-shot) | 53.84 |
| HellaSwag (10-shot) | 77.05 |
| MMLU (5-shot) | 53.57 |
| TruthfulQA (0-shot) | 44.06 |
| Winogrande (5-shot) | 74.98 |
| GSM8K (5-shot) | 17.06 |
| DROP (3-shot) | 44.21 |
|