TimKond commited on
Commit
facf738
·
1 Parent(s): 29e0b9a

Readme updated

Browse files
Files changed (1) hide show
  1. README.md +25 -8
README.md CHANGED
@@ -4,6 +4,12 @@ tags:
4
  model-index:
5
  - name: diffusion-detection
6
  results: []
 
 
 
 
 
 
7
  ---
8
 
9
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -11,21 +17,32 @@ should probably proofread and complete it, then remove this comment. -->
11
 
12
  # diffusion-detection
13
 
14
- This model was trained from scratch on the None dataset.
15
 
16
- ## Model description
17
 
18
- More information needed
 
 
19
 
20
- ## Intended uses & limitations
 
21
 
22
- More information needed
 
 
 
 
 
 
 
 
23
 
24
  ## Training and evaluation data
25
 
26
- More information needed
27
 
28
- ## Training procedure
29
 
30
  ### Training hyperparameters
31
 
@@ -44,4 +61,4 @@ The following hyperparameters were used during training:
44
  - Transformers 4.29.2
45
  - Pytorch 1.11.0+cu113
46
  - Datasets 2.12.0
47
- - Tokenizers 0.13.3
 
4
  model-index:
5
  - name: diffusion-detection
6
  results: []
7
+ license: apache-2.0
8
+ datasets:
9
+ - imagenet-1k
10
+ metrics:
11
+ - accuracy
12
+ pipeline_tag: image-classification
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
17
 
18
  # diffusion-detection
19
 
20
+ This model was trained to distinguish real world images (negative) from machine generated ones (postive).
21
 
22
+ ## Model usage
23
 
24
+ ```python
25
+ from transformers import BeitImageProcessor, BeitForImageClassification
26
+ from PIL import Image
27
 
28
+ processor = BeitImageProcessor.from_pretrained('TimKond/diffusion-detection')
29
+ model = BeitForImageClassification.from_pretrained('TimKond/diffusion-detection')
30
 
31
+ image = Image.open("2980_saltshaker.jpg")
32
+
33
+ inputs = processor(images=image, return_tensors="pt")
34
+ outputs = model(**inputs)
35
+ logits = outputs.logits
36
+
37
+ predicted_class_idx = logits.argmax(-1).item()
38
+ print("Predicted class:", model.config.id2label[predicted_class_idx])
39
+ ```
40
 
41
  ## Training and evaluation data
42
 
43
+ [BEiT-base-patch16-224-pt22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k) was loaded as a base model for further fine tuning:
44
 
45
+ As negatives a subsample of 10.000 images from [imagenet-1k](https://huggingface.co/datasets/imagenet-1k) was used. Complementary 10.000 positive images were generated using [Realistic_Vision_V1.4](https://huggingface.co/SG161222/Realistic_Vision_V1.4).
46
 
47
  ### Training hyperparameters
48
 
 
61
  - Transformers 4.29.2
62
  - Pytorch 1.11.0+cu113
63
  - Datasets 2.12.0
64
+ - Tokenizers 0.13.3