Commit
·
bbdb32f
1
Parent(s):
3e728ab
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 110.31 +/- 93.33
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa988f11050>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa988f110e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa988f11170>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa988f11200>", "_build": "<function ActorCriticPolicy._build at 0x7fa988f11290>", "forward": "<function ActorCriticPolicy.forward at 0x7fa988f11320>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa988f113b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa988f11440>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa988f114d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa988f11560>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa988f115f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa988ee44b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651919697.461312, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3JDT0wZfo+3XVxvHKYK76gB5+8MIWHPQAAAAAAAAAAZjNrvVI4pbmafBC7Y8HEOLgyAzuuiCs6AACAPwAAgD8TFSu+8fQ8PCh7lDyuXuy65NTQvT6f4TsAAIA/AACAPxpxmT0QF6Y/Xx6FPlW3t752G7k9PS8SPgAAAAAAAAAAzaxCurgeyzgObGq6HHPJtY5MBTvwkYs5AACAPwAAgD/zzvS9nwB/Py5sLb0zTaO+2jlBvho3mz0AAAAAAAAAAB1deL7v3gA9WhqzvQEj+709EO69YmWjPAAAAAAAAAAAmnXOPB9l8zgtOum7Y/CtOI/ljTsbyyO4AACAPwAAgD8A7VU9j0oduu4z0bnpQJs1yQQKO4gf+TgAAIA/AACAP2bmKTwXBzE++SkNvY8jUr7qbM69WZs/PAAAAAAAAAAAa+2YvhSWgLr4eRg5f2Eetue9nDsYWhy1AACAPwAAgD9zccE9rkesN9+/tboWsJW2fWTEu3+UCzYAAIA/AACAP/PBLT62BlK8fzEMPH7xXLrpZr+9e7k4uwAAgD8AAIA/s9q5vfYcULrCgG2735k2N/JbyLraAI+2AACAPwAAgD+NaIA9KfxEuiPbfbuMrJK2IKs3O7SVkzoAAIA/AACAP4Z89L6HaUS9CKxyOp+/w7jm+R++urvTuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/82LE1+mXECUhpRSlIwBbJRN6AOMAXSUR0CPsrpDeCTVdX2UKGgGaAloD0MIRzmYTYBMYsCUhpRSlGgVTQEBaBZHQI+8h2wFC9h1fZQoaAZoCWgPQwhrLcxCO+9bQJSGlFKUaBVN6ANoFkdAj80Hxz7uUnV9lChoBmgJaA9DCGeZRSi2z1FAlIaUUpRoFU3oA2gWR0CP1va0QbuMdX2UKGgGaAloD0MIPNhit88uXECUhpRSlGgVTegDaBZHQJAOKkJrtVt1fZQoaAZoCWgPQwicilQYW4JSQJSGlFKUaBVN6ANoFkdAkBG9VaOghHV9lChoBmgJaA9DCMrhk04kel5AlIaUUpRoFU3oA2gWR0CQGsXrMTvidX2UKGgGaAloD0MIkXwlkBJoW0CUhpRSlGgVTegDaBZHQJAhnSLIgeR1fZQoaAZoCWgPQwjR56OMuGlfwJSGlFKUaBVNCANoFkdAkCWa4Ds+mnV9lChoBmgJaA9DCFgAUwYOrVlAlIaUUpRoFU3oA2gWR0CQJd/ag261dX2UKGgGaAloD0MIuTR+4ZVkLcCUhpRSlGgVTTYBaBZHQJAmfWQOnVJ1fZQoaAZoCWgPQwgXuhKB6iBXQJSGlFKUaBVN6ANoFkdAkCa+kHlfZ3V9lChoBmgJaA9DCBH92vrpQVxAlIaUUpRoFU3oA2gWR0CQN4Z88cMmdX2UKGgGaAloD0MIOBPThVjaWECUhpRSlGgVTegDaBZHQJA68YxcmjV1fZQoaAZoCWgPQwifVtEfmlU+wJSGlFKUaBVNiQFoFkdAkD4dZvDP4XV9lChoBmgJaA9DCK9A9KRMBVPAlIaUUpRoFU1BAWgWR0CQQtkP+XJHdX2UKGgGaAloD0MIOEiI8gXAWECUhpRSlGgVTegDaBZHQJBGBAeJYT11fZQoaAZoCWgPQwjjGp/J/o5eQJSGlFKUaBVN6ANoFkdAkExd+9allHV9lChoBmgJaA9DCAmKH2Pu2gDAlIaUUpRoFU3oA2gWR0CQUKE/B3zMdX2UKGgGaAloD0MIvaseMA/zXECUhpRSlGgVTegDaBZHQJBS53Ux20R1fZQoaAZoCWgPQwgI6SlyiIxWQJSGlFKUaBVN6ANoFkdAkFfCaEzwdHV9lChoBmgJaA9DCH8SnztBbWFAlIaUUpRoFU3oA2gWR0CQX4DgIhQndX2UKGgGaAloD0MItwpioOsbYECUhpRSlGgVTegDaBZHQJCGqd8Rcu91fZQoaAZoCWgPQwj2J/G5E31WQJSGlFKUaBVN6ANoFkdAkIoleWv8qHV9lChoBmgJaA9DCFSsGoS5PV5AlIaUUpRoFU3oA2gWR0CQmlwqAjIJdX2UKGgGaAloD0MILUKxFTRFRUCUhpRSlGgVTegDaBZHQJCeS7z06HV1fZQoaAZoCWgPQwifWRKgpg9UQJSGlFKUaBVN6ANoFkdAkJ6ShWYF7nV9lChoBmgJaA9DCNPB+j+HEFxAlIaUUpRoFU3oA2gWR0CQn2xcVxjsdX2UKGgGaAloD0MIEsE4uHRMKsCUhpRSlGgVS+ZoFkdAkJ/dBOYYznV9lChoBmgJaA9DCOzf9Zkz/2JAlIaUUpRoFU3oA2gWR0CQrs1b7j1gdX2UKGgGaAloD0MIXhCRmnaEYECUhpRSlGgVTegDaBZHQJCxvyH2ys11fZQoaAZoCWgPQwhjZMkcy+paQJSGlFKUaBVN6ANoFkdAkLSRAKOT7nV9lChoBmgJaA9DCJ2BkZc1F1hAlIaUUpRoFU3oA2gWR0CQuKZ00WM1dX2UKGgGaAloD0MIg2kYPiLOXkCUhpRSlGgVTegDaBZHQJC7TwLE1l51fZQoaAZoCWgPQwgvaYzWUUVeQJSGlFKUaBVN6ANoFkdAkMDUehf0E3V9lChoBmgJaA9DCCv52F2g31JAlIaUUpRoFU3oA2gWR0CQxLnivPkadX2UKGgGaAloD0MIKGA7GLHPEMCUhpRSlGgVS+ZoFkdAkMTpCF9KEnV9lChoBmgJaA9DCCBj7lpCzl5AlIaUUpRoFU3oA2gWR0CQxufU4JeFdX2UKGgGaAloD0MICOQSRx5lXUCUhpRSlGgVTegDaBZHQJDLaQtBfKJ1fZQoaAZoCWgPQwjGTngJTgU7wJSGlFKUaBVNGQFoFkdAkNJLJwKjSHV9lChoBmgJaA9DCCvB4nDmH2FAlIaUUpRoFU3oA2gWR0CQ0p9ugpSadX2UKGgGaAloD0MIhQoOL4i+WkCUhpRSlGgVTegDaBZHQJDbMcENe+p1fZQoaAZoCWgPQwhFnE6y1RFAwJSGlFKUaBVL3mgWR0CQ+sMHryDqdX2UKGgGaAloD0MI3gVKCiyOVkCUhpRSlGgVTegDaBZHQJEK6Ifr8ix1fZQoaAZoCWgPQwhw0clS6wlVQJSGlFKUaBVN6ANoFkdAkQ6p1eSjg3V9lChoBmgJaA9DCD7t8NdkklpAlIaUUpRoFU3oA2gWR0CRDvIJ7b+MdX2UKGgGaAloD0MIA30iTxLBYECUhpRSlGgVTegDaBZHQJEPz5GjKxN1fZQoaAZoCWgPQwh+/KVFfdBPQJSGlFKUaBVN6ANoFkdAkRBELtu1nnV9lChoBmgJaA9DCFKazeMwTVtAlIaUUpRoFU3oA2gWR0CRH99bX6IndX2UKGgGaAloD0MIfH4YITwyQsCUhpRSlGgVS+xoFkdAkSIOYQarFXV9lChoBmgJaA9DCMAHr13aIltAlIaUUpRoFU3oA2gWR0CRJjXQMQVcdX2UKGgGaAloD0MIETY8vVLBZkCUhpRSlGgVTQ0DaBZHQJEmYMa0hNd1fZQoaAZoCWgPQwhd3bHYJsVdQJSGlFKUaBVN6ANoFkdAkSqkm+j/MnV9lChoBmgJaA9DCMNGWb+ZgDDAlIaUUpRoFU3oA2gWR0CRM4vKU3XJdX2UKGgGaAloD0MIr1sExvoGEECUhpRSlGgVS8ZoFkdAkTPkJ8fFJnV9lChoBmgJaA9DCCiaB7DIfxzAlIaUUpRoFUvqaBZHQJE05p48lol1fZQoaAZoCWgPQwggt18+WcJTQJSGlFKUaBVN6ANoFkdAkTdYwZflZHV9lChoBmgJaA9DCLU2je21KFpAlIaUUpRoFU3oA2gWR0CRN4DZUT+OdX2UKGgGaAloD0MIc/G3PUFaM8CUhpRSlGgVS8FoFkdAkTsTzND+i3V9lChoBmgJaA9DCMHJNnAHYVtAlIaUUpRoFU3oA2gWR0CRRR8qnWJ8dX2UKGgGaAloD0MIEynN5nFJWkCUhpRSlGgVTegDaBZHQJFFcvXbudB1fZQoaAZoCWgPQwjLgLOUrHRhQJSGlFKUaBVN6ANoFkdAkU39zr/sFHV9lChoBmgJaA9DCGEb8WS38mBAlIaUUpRoFU3oA2gWR0CRUG9Gqgh9dX2UKGgGaAloD0MIq65DNaVcYECUhpRSlGgVTegDaBZHQJF+v7iyY5V1fZQoaAZoCWgPQwi0Imqiz/JZQJSGlFKUaBVN6ANoFkdAkYMa9kBjnXV9lChoBmgJaA9DCC++aI8XZl9AlIaUUpRoFU3oA2gWR0CRhB97F85TdX2UKGgGaAloD0MIchWL3xSUZUCUhpRSlGgVTegDaBZHQJGEqCBf8dh1fZQoaAZoCWgPQwhtVn2utuhhQJSGlFKUaBVN6ANoFkdAkZ1IDDCP63V9lChoBmgJaA9DCP9aXrneR1lAlIaUUpRoFU3oA2gWR0CRnXaakRBedX2UKGgGaAloD0MIWJHRAUnoJMCUhpRSlGgVTRkBaBZHQJGfIkTpPh11fZQoaAZoCWgPQwgs8uuH2INcQJSGlFKUaBVN6ANoFkdAkavyKziS73V9lChoBmgJaA9DCJz51Rwg1WJAlIaUUpRoFU3oA2gWR0CRrFmiQDFIdX2UKGgGaAloD0MIWK63zVROXECUhpRSlGgVTegDaBZHQJGtd88cMmZ1fZQoaAZoCWgPQwh/Ep87weJTQJSGlFKUaBVN6ANoFkdAkbAD5GjKxXV9lChoBmgJaA9DCPlM9s/TEVtAlIaUUpRoFU3oA2gWR0CRsC5zYEntdX2UKGgGaAloD0MIE/BrJIm6ZECUhpRSlGgVTf4BaBZHQJGy2eAd4ml1fZQoaAZoCWgPQwhH5/wUx6hhQJSGlFKUaBVN6ANoFkdAkbOq+ajN6nV9lChoBmgJaA9DCB4bgXjdnWJAlIaUUpRoFU3oA2gWR0CRvMovBacJdX2UKGgGaAloD0MIFOrpI/DyVECUhpRSlGgVTegDaBZHQJG9F+G47Rx1fZQoaAZoCWgPQwhbBpylZEdVQJSGlFKUaBVN6ANoFkdAkcUi/9Hc13V9lChoBmgJaA9DCNgQHJdx0FtAlIaUUpRoFU3oA2gWR0CRx4gB91EFdX2UKGgGaAloD0MI4NVyZybYEUCUhpRSlGgVTXQBaBZHQJHrPwqiGnJ1fZQoaAZoCWgPQwi6oL5lTgVgQJSGlFKUaBVN6ANoFkdAkfXFxOtW/HV9lChoBmgJaA9DCPfpeMxAYmVAlIaUUpRoFU1iAWgWR0CR+Yh/RVp9dX2UKGgGaAloD0MImWN5Vz1bXUCUhpRSlGgVTegDaBZHQJH62ONo8IR1fZQoaAZoCWgPQwhW1jbFY4tlQJSGlFKUaBVNUwFoFkdAkgGD6nBLwnV9lChoBmgJaA9DCFsjgnFwSGFAlIaUUpRoFU3oA2gWR0CSE1ZyuIRAdX2UKGgGaAloD0MI0xIro5EcW0CUhpRSlGgVTegDaBZHQJITgXcgyM11fZQoaAZoCWgPQwgc7iO3pi9jQJSGlFKUaBVNBANoFkdAkhTIPbwjMXV9lChoBmgJaA9DCBNHHogsQFlAlIaUUpRoFU3oA2gWR0CSFR4OMERrdX2UKGgGaAloD0MI5jv4iYO6YUCUhpRSlGgVTegDaBZHQJIgcbYK6Wh1fZQoaAZoCWgPQwjG20qvzdRYQJSGlFKUaBVN6ANoFkdAkiDSLVFx43V9lChoBmgJaA9DCE/ltKfkNV1AlIaUUpRoFU3oA2gWR0CSIcVawD/3dX2UKGgGaAloD0MIATEJF3KfYUCUhpRSlGgVTegDaBZHQJIkFH7P6bh1fZQoaAZoCWgPQwhlcf+R6WZdQJSGlFKUaBVN6ANoFkdAkiajWPLgXXV9lChoBmgJaA9DCCqRRC+jNldAlIaUUpRoFU3oA2gWR0CSMPbnHNordX2UKGgGaAloD0MIsMbZdATwTkCUhpRSlGgVS91oFkdAkjEiGi5/b3V9lChoBmgJaA9DCMGLvoI0czrAlIaUUpRoFUvLaBZHQJI2XhcZ9/l1fZQoaAZoCWgPQwhJ1uHoKplhQJSGlFKUaBVN6ANoFkdAkjvhgJC0GHV9lChoBmgJaA9DCOj3/ZsXAzJAlIaUUpRoFU1UAWgWR0CSPsT6zmfXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9570c8f0ec4e0076ac48f6cc54c6d36233b55ea2ecd10f6802777facb23b63a
|
3 |
+
size 144035
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa988f11050>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa988f110e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa988f11170>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa988f11200>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa988f11290>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa988f11320>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa988f113b0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa988f11440>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa988f114d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa988f11560>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa988f115f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fa988ee44b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651919697.461312,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3JDT0wZfo+3XVxvHKYK76gB5+8MIWHPQAAAAAAAAAAZjNrvVI4pbmafBC7Y8HEOLgyAzuuiCs6AACAPwAAgD8TFSu+8fQ8PCh7lDyuXuy65NTQvT6f4TsAAIA/AACAPxpxmT0QF6Y/Xx6FPlW3t752G7k9PS8SPgAAAAAAAAAAzaxCurgeyzgObGq6HHPJtY5MBTvwkYs5AACAPwAAgD/zzvS9nwB/Py5sLb0zTaO+2jlBvho3mz0AAAAAAAAAAB1deL7v3gA9WhqzvQEj+709EO69YmWjPAAAAAAAAAAAmnXOPB9l8zgtOum7Y/CtOI/ljTsbyyO4AACAPwAAgD8A7VU9j0oduu4z0bnpQJs1yQQKO4gf+TgAAIA/AACAP2bmKTwXBzE++SkNvY8jUr7qbM69WZs/PAAAAAAAAAAAa+2YvhSWgLr4eRg5f2Eetue9nDsYWhy1AACAPwAAgD9zccE9rkesN9+/tboWsJW2fWTEu3+UCzYAAIA/AACAP/PBLT62BlK8fzEMPH7xXLrpZr+9e7k4uwAAgD8AAIA/s9q5vfYcULrCgG2735k2N/JbyLraAI+2AACAPwAAgD+NaIA9KfxEuiPbfbuMrJK2IKs3O7SVkzoAAIA/AACAP4Z89L6HaUS9CKxyOp+/w7jm+R++urvTuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/82LE1+mXECUhpRSlIwBbJRN6AOMAXSUR0CPsrpDeCTVdX2UKGgGaAloD0MIRzmYTYBMYsCUhpRSlGgVTQEBaBZHQI+8h2wFC9h1fZQoaAZoCWgPQwhrLcxCO+9bQJSGlFKUaBVN6ANoFkdAj80Hxz7uUnV9lChoBmgJaA9DCGeZRSi2z1FAlIaUUpRoFU3oA2gWR0CP1va0QbuMdX2UKGgGaAloD0MIPNhit88uXECUhpRSlGgVTegDaBZHQJAOKkJrtVt1fZQoaAZoCWgPQwicilQYW4JSQJSGlFKUaBVN6ANoFkdAkBG9VaOghHV9lChoBmgJaA9DCMrhk04kel5AlIaUUpRoFU3oA2gWR0CQGsXrMTvidX2UKGgGaAloD0MIkXwlkBJoW0CUhpRSlGgVTegDaBZHQJAhnSLIgeR1fZQoaAZoCWgPQwjR56OMuGlfwJSGlFKUaBVNCANoFkdAkCWa4Ds+mnV9lChoBmgJaA9DCFgAUwYOrVlAlIaUUpRoFU3oA2gWR0CQJd/ag261dX2UKGgGaAloD0MIuTR+4ZVkLcCUhpRSlGgVTTYBaBZHQJAmfWQOnVJ1fZQoaAZoCWgPQwgXuhKB6iBXQJSGlFKUaBVN6ANoFkdAkCa+kHlfZ3V9lChoBmgJaA9DCBH92vrpQVxAlIaUUpRoFU3oA2gWR0CQN4Z88cMmdX2UKGgGaAloD0MIOBPThVjaWECUhpRSlGgVTegDaBZHQJA68YxcmjV1fZQoaAZoCWgPQwifVtEfmlU+wJSGlFKUaBVNiQFoFkdAkD4dZvDP4XV9lChoBmgJaA9DCK9A9KRMBVPAlIaUUpRoFU1BAWgWR0CQQtkP+XJHdX2UKGgGaAloD0MIOEiI8gXAWECUhpRSlGgVTegDaBZHQJBGBAeJYT11fZQoaAZoCWgPQwjjGp/J/o5eQJSGlFKUaBVN6ANoFkdAkExd+9allHV9lChoBmgJaA9DCAmKH2Pu2gDAlIaUUpRoFU3oA2gWR0CQUKE/B3zMdX2UKGgGaAloD0MIvaseMA/zXECUhpRSlGgVTegDaBZHQJBS53Ux20R1fZQoaAZoCWgPQwgI6SlyiIxWQJSGlFKUaBVN6ANoFkdAkFfCaEzwdHV9lChoBmgJaA9DCH8SnztBbWFAlIaUUpRoFU3oA2gWR0CQX4DgIhQndX2UKGgGaAloD0MItwpioOsbYECUhpRSlGgVTegDaBZHQJCGqd8Rcu91fZQoaAZoCWgPQwj2J/G5E31WQJSGlFKUaBVN6ANoFkdAkIoleWv8qHV9lChoBmgJaA9DCFSsGoS5PV5AlIaUUpRoFU3oA2gWR0CQmlwqAjIJdX2UKGgGaAloD0MILUKxFTRFRUCUhpRSlGgVTegDaBZHQJCeS7z06HV1fZQoaAZoCWgPQwifWRKgpg9UQJSGlFKUaBVN6ANoFkdAkJ6ShWYF7nV9lChoBmgJaA9DCNPB+j+HEFxAlIaUUpRoFU3oA2gWR0CQn2xcVxjsdX2UKGgGaAloD0MIEsE4uHRMKsCUhpRSlGgVS+ZoFkdAkJ/dBOYYznV9lChoBmgJaA9DCOzf9Zkz/2JAlIaUUpRoFU3oA2gWR0CQrs1b7j1gdX2UKGgGaAloD0MIXhCRmnaEYECUhpRSlGgVTegDaBZHQJCxvyH2ys11fZQoaAZoCWgPQwhjZMkcy+paQJSGlFKUaBVN6ANoFkdAkLSRAKOT7nV9lChoBmgJaA9DCJ2BkZc1F1hAlIaUUpRoFU3oA2gWR0CQuKZ00WM1dX2UKGgGaAloD0MIg2kYPiLOXkCUhpRSlGgVTegDaBZHQJC7TwLE1l51fZQoaAZoCWgPQwgvaYzWUUVeQJSGlFKUaBVN6ANoFkdAkMDUehf0E3V9lChoBmgJaA9DCCv52F2g31JAlIaUUpRoFU3oA2gWR0CQxLnivPkadX2UKGgGaAloD0MIKGA7GLHPEMCUhpRSlGgVS+ZoFkdAkMTpCF9KEnV9lChoBmgJaA9DCCBj7lpCzl5AlIaUUpRoFU3oA2gWR0CQxufU4JeFdX2UKGgGaAloD0MICOQSRx5lXUCUhpRSlGgVTegDaBZHQJDLaQtBfKJ1fZQoaAZoCWgPQwjGTngJTgU7wJSGlFKUaBVNGQFoFkdAkNJLJwKjSHV9lChoBmgJaA9DCCvB4nDmH2FAlIaUUpRoFU3oA2gWR0CQ0p9ugpSadX2UKGgGaAloD0MIhQoOL4i+WkCUhpRSlGgVTegDaBZHQJDbMcENe+p1fZQoaAZoCWgPQwhFnE6y1RFAwJSGlFKUaBVL3mgWR0CQ+sMHryDqdX2UKGgGaAloD0MI3gVKCiyOVkCUhpRSlGgVTegDaBZHQJEK6Ifr8ix1fZQoaAZoCWgPQwhw0clS6wlVQJSGlFKUaBVN6ANoFkdAkQ6p1eSjg3V9lChoBmgJaA9DCD7t8NdkklpAlIaUUpRoFU3oA2gWR0CRDvIJ7b+MdX2UKGgGaAloD0MIA30iTxLBYECUhpRSlGgVTegDaBZHQJEPz5GjKxN1fZQoaAZoCWgPQwh+/KVFfdBPQJSGlFKUaBVN6ANoFkdAkRBELtu1nnV9lChoBmgJaA9DCFKazeMwTVtAlIaUUpRoFU3oA2gWR0CRH99bX6IndX2UKGgGaAloD0MIfH4YITwyQsCUhpRSlGgVS+xoFkdAkSIOYQarFXV9lChoBmgJaA9DCMAHr13aIltAlIaUUpRoFU3oA2gWR0CRJjXQMQVcdX2UKGgGaAloD0MIETY8vVLBZkCUhpRSlGgVTQ0DaBZHQJEmYMa0hNd1fZQoaAZoCWgPQwhd3bHYJsVdQJSGlFKUaBVN6ANoFkdAkSqkm+j/MnV9lChoBmgJaA9DCMNGWb+ZgDDAlIaUUpRoFU3oA2gWR0CRM4vKU3XJdX2UKGgGaAloD0MIr1sExvoGEECUhpRSlGgVS8ZoFkdAkTPkJ8fFJnV9lChoBmgJaA9DCCiaB7DIfxzAlIaUUpRoFUvqaBZHQJE05p48lol1fZQoaAZoCWgPQwggt18+WcJTQJSGlFKUaBVN6ANoFkdAkTdYwZflZHV9lChoBmgJaA9DCLU2je21KFpAlIaUUpRoFU3oA2gWR0CRN4DZUT+OdX2UKGgGaAloD0MIc/G3PUFaM8CUhpRSlGgVS8FoFkdAkTsTzND+i3V9lChoBmgJaA9DCMHJNnAHYVtAlIaUUpRoFU3oA2gWR0CRRR8qnWJ8dX2UKGgGaAloD0MIEynN5nFJWkCUhpRSlGgVTegDaBZHQJFFcvXbudB1fZQoaAZoCWgPQwjLgLOUrHRhQJSGlFKUaBVN6ANoFkdAkU39zr/sFHV9lChoBmgJaA9DCGEb8WS38mBAlIaUUpRoFU3oA2gWR0CRUG9Gqgh9dX2UKGgGaAloD0MIq65DNaVcYECUhpRSlGgVTegDaBZHQJF+v7iyY5V1fZQoaAZoCWgPQwi0Imqiz/JZQJSGlFKUaBVN6ANoFkdAkYMa9kBjnXV9lChoBmgJaA9DCC++aI8XZl9AlIaUUpRoFU3oA2gWR0CRhB97F85TdX2UKGgGaAloD0MIchWL3xSUZUCUhpRSlGgVTegDaBZHQJGEqCBf8dh1fZQoaAZoCWgPQwhtVn2utuhhQJSGlFKUaBVN6ANoFkdAkZ1IDDCP63V9lChoBmgJaA9DCP9aXrneR1lAlIaUUpRoFU3oA2gWR0CRnXaakRBedX2UKGgGaAloD0MIWJHRAUnoJMCUhpRSlGgVTRkBaBZHQJGfIkTpPh11fZQoaAZoCWgPQwgs8uuH2INcQJSGlFKUaBVN6ANoFkdAkavyKziS73V9lChoBmgJaA9DCJz51Rwg1WJAlIaUUpRoFU3oA2gWR0CRrFmiQDFIdX2UKGgGaAloD0MIWK63zVROXECUhpRSlGgVTegDaBZHQJGtd88cMmZ1fZQoaAZoCWgPQwh/Ep87weJTQJSGlFKUaBVN6ANoFkdAkbAD5GjKxXV9lChoBmgJaA9DCPlM9s/TEVtAlIaUUpRoFU3oA2gWR0CRsC5zYEntdX2UKGgGaAloD0MIE/BrJIm6ZECUhpRSlGgVTf4BaBZHQJGy2eAd4ml1fZQoaAZoCWgPQwhH5/wUx6hhQJSGlFKUaBVN6ANoFkdAkbOq+ajN6nV9lChoBmgJaA9DCB4bgXjdnWJAlIaUUpRoFU3oA2gWR0CRvMovBacJdX2UKGgGaAloD0MIFOrpI/DyVECUhpRSlGgVTegDaBZHQJG9F+G47Rx1fZQoaAZoCWgPQwhbBpylZEdVQJSGlFKUaBVN6ANoFkdAkcUi/9Hc13V9lChoBmgJaA9DCNgQHJdx0FtAlIaUUpRoFU3oA2gWR0CRx4gB91EFdX2UKGgGaAloD0MI4NVyZybYEUCUhpRSlGgVTXQBaBZHQJHrPwqiGnJ1fZQoaAZoCWgPQwi6oL5lTgVgQJSGlFKUaBVN6ANoFkdAkfXFxOtW/HV9lChoBmgJaA9DCPfpeMxAYmVAlIaUUpRoFU1iAWgWR0CR+Yh/RVp9dX2UKGgGaAloD0MImWN5Vz1bXUCUhpRSlGgVTegDaBZHQJH62ONo8IR1fZQoaAZoCWgPQwhW1jbFY4tlQJSGlFKUaBVNUwFoFkdAkgGD6nBLwnV9lChoBmgJaA9DCFsjgnFwSGFAlIaUUpRoFU3oA2gWR0CSE1ZyuIRAdX2UKGgGaAloD0MI0xIro5EcW0CUhpRSlGgVTegDaBZHQJITgXcgyM11fZQoaAZoCWgPQwgc7iO3pi9jQJSGlFKUaBVNBANoFkdAkhTIPbwjMXV9lChoBmgJaA9DCBNHHogsQFlAlIaUUpRoFU3oA2gWR0CSFR4OMERrdX2UKGgGaAloD0MI5jv4iYO6YUCUhpRSlGgVTegDaBZHQJIgcbYK6Wh1fZQoaAZoCWgPQwjG20qvzdRYQJSGlFKUaBVN6ANoFkdAkiDSLVFx43V9lChoBmgJaA9DCE/ltKfkNV1AlIaUUpRoFU3oA2gWR0CSIcVawD/3dX2UKGgGaAloD0MIATEJF3KfYUCUhpRSlGgVTegDaBZHQJIkFH7P6bh1fZQoaAZoCWgPQwhlcf+R6WZdQJSGlFKUaBVN6ANoFkdAkiajWPLgXXV9lChoBmgJaA9DCCqRRC+jNldAlIaUUpRoFU3oA2gWR0CSMPbnHNordX2UKGgGaAloD0MIsMbZdATwTkCUhpRSlGgVS91oFkdAkjEiGi5/b3V9lChoBmgJaA9DCMGLvoI0czrAlIaUUpRoFUvLaBZHQJI2XhcZ9/l1fZQoaAZoCWgPQwhJ1uHoKplhQJSGlFKUaBVN6ANoFkdAkjvhgJC0GHV9lChoBmgJaA9DCOj3/ZsXAzJAlIaUUpRoFU1UAWgWR0CSPsT6zmfXdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ccf0504cc2bbd279167d7aa6f8b0d063b7a3834b373e65a52ce9918cf8d2be3
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6723f554f0663ea05039ef4338f6449b5dd54810b572578879e95f342d0bbb4
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:726916a798c233535c0098f282dee769b97c16dacbee8085522dea075fa27050
|
3 |
+
size 252888
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 110.31473435092309, "std_reward": 93.33384248490492, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T10:50:37.565668"}
|