a2c-PandaReachDense-v2 / config.json
Tingwen's picture
Initial commit
c4a741e
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f3b15acbf40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b15ad8040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684595237462983758, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUrPkPsHSLDzBqBU/UrPkPsHSLDzBqBU/UrPkPsHSLDzBqBU/UrPkPsHSLDzBqBU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAFGEJv/aAGj8kZXA/uCBuP2CiPr/3f6U+WAWhvivtbL4905+/WoGgv5eBnD+vDPI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABSs+Q+wdIsPMGoFT/TIww8YFZZutjjUDxSs+Q+wdIsPMGoFT/TIww8YFZZutjjUDxSs+Q+wdIsPMGoFT/TIww8YFZZutjjUDxSs+Q+wdIsPMGoFT/TIww8YFZZutjjUDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4466806 0.01054829 0.58460623]\n [0.4466806 0.01054829 0.58460623]\n [0.4466806 0.01054829 0.58460623]\n [0.4466806 0.01054829 0.58460623]]", "desired_goal": "[[-0.53663754 0.6035303 0.9390433 ]\n [ 0.93018675 -0.74466515 0.32324192]\n [-0.3144939 -0.23137347 -1.248634 ]\n [-1.2539475 1.2227048 0.02954706]]", "observation": "[[ 0.4466806 0.01054829 0.58460623 0.00855346 -0.00082908 0.01274963]\n [ 0.4466806 0.01054829 0.58460623 0.00855346 -0.00082908 0.01274963]\n [ 0.4466806 0.01054829 0.58460623 0.00855346 -0.00082908 0.01274963]\n [ 0.4466806 0.01054829 0.58460623 0.00855346 -0.00082908 0.01274963]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0aIQvkalWrxExAM9lel8PVrmIjyncZY+eFolPQa0xj00u+U9+GlLvJPPDz5Nqdw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1412461 -0.01334507 0.0321696 ]\n [ 0.0617462 0.00994262 0.29383585]\n [ 0.04036948 0.09702305 0.11217347]\n [-0.0124154 0.14044027 0.10774479]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIE9VbA1v1EMCUhpRSlIwBbJRLMowBdJRHQK1OoC5mRNh1fZQoaAZoCWgPQwjEXb2KjM76v5SGlFKUaBVLMmgWR0CtTgRK6FufdX2UKGgGaAloD0MIR3cQO1NIC8CUhpRSlGgVSzJoFkdArU1rND+irXV9lChoBmgJaA9DCBueXinLcATAlIaUUpRoFUsyaBZHQK1M3A2ycCp1fZQoaAZoCWgPQwilETP7PEYIwJSGlFKUaBVLMmgWR0CtUJIR7JGOdX2UKGgGaAloD0MIo4/5gEAnBMCUhpRSlGgVSzJoFkdArU/z1yvLYHV9lChoBmgJaA9DCCHM7V7uk/m/lIaUUpRoFUsyaBZHQK1PWjyFwkx1fZQoaAZoCWgPQwjHEWvxKcACwJSGlFKUaBVLMmgWR0CtTssA3kxRdX2UKGgGaAloD0MI/KVFfZKbBcCUhpRSlGgVSzJoFkdArVKBsEaESXV9lChoBmgJaA9DCG1TPC6qJQHAlIaUUpRoFUsyaBZHQK1R454GD+R1fZQoaAZoCWgPQwhMb38uGlILwJSGlFKUaBVLMmgWR0CtUUqJVKf4dX2UKGgGaAloD0MIVpkprb/FAcCUhpRSlGgVSzJoFkdArVC7iuMdcXV9lChoBmgJaA9DCKuVCb/Uj/2/lIaUUpRoFUsyaBZHQK1UbTjvNNd1fZQoaAZoCWgPQwjT+IVXknwSwJSGlFKUaBVLMmgWR0CtU9DJ+2E1dX2UKGgGaAloD0MIWTFcHQARBMCUhpRSlGgVSzJoFkdArVM3Rb8m8nV9lChoBmgJaA9DCDsYsU8A5QPAlIaUUpRoFUsyaBZHQK1SqCyQgcN1fZQoaAZoCWgPQwirXRPSGgMMwJSGlFKUaBVLMmgWR0CtVdtyPuG9dX2UKGgGaAloD0MIceKrHcVZAcCUhpRSlGgVSzJoFkdArVU8SPEKmnV9lChoBmgJaA9DCLvvGB77eQfAlIaUUpRoFUsyaBZHQK1UofjjrAx1fZQoaAZoCWgPQwj2l92Th+UMwJSGlFKUaBVLMmgWR0CtVBHj6vaDdX2UKGgGaAloD0MIZJKRs7CnCsCUhpRSlGgVSzJoFkdArVbr5Kvmo3V9lChoBmgJaA9DCD1lNV1P9Pu/lIaUUpRoFUsyaBZHQK1WTSsr/bV1fZQoaAZoCWgPQwgROugSDn0DwJSGlFKUaBVLMmgWR0CtVbLGBFuvdX2UKGgGaAloD0MIbLHbZ5V5BsCUhpRSlGgVSzJoFkdArVUiqEOAiHV9lChoBmgJaA9DCAa8zLBRVgDAlIaUUpRoFUsyaBZHQK1YAiNbTtt1fZQoaAZoCWgPQwimXrcIjDUHwJSGlFKUaBVLMmgWR0CtV2MrmQr+dX2UKGgGaAloD0MIg6EOK9ySCcCUhpRSlGgVSzJoFkdArVbI4ffXPXV9lChoBmgJaA9DCHBBtixf1wDAlIaUUpRoFUsyaBZHQK1WOS26TW51fZQoaAZoCWgPQwiFBmLZzEEHwJSGlFKUaBVLMmgWR0CtWReyiVSodX2UKGgGaAloD0MIrRbYYyKlCMCUhpRSlGgVSzJoFkdArVh4q/dqL3V9lChoBmgJaA9DCJ+rrdhflgDAlIaUUpRoFUsyaBZHQK1X3kfcN6R1fZQoaAZoCWgPQwip2m6Cb1r+v5SGlFKUaBVLMmgWR0CtV05jYqXodX2UKGgGaAloD0MI3V1nQ/4ZAcCUhpRSlGgVSzJoFkdArVpMZgogFHV9lChoBmgJaA9DCPkRv2INFwDAlIaUUpRoFUsyaBZHQK1ZrWNm16V1fZQoaAZoCWgPQwhanDHMCfoIwJSGlFKUaBVLMmgWR0CtWRL08NhFdX2UKGgGaAloD0MIFJM3wMznEsCUhpRSlGgVSzJoFkdArViDn9vS+nV9lChoBmgJaA9DCM5xbhPutQ3AlIaUUpRoFUsyaBZHQK1bWNUfgaZ1fZQoaAZoCWgPQwiSrpl8sw38v5SGlFKUaBVLMmgWR0CtWrnpB5X2dX2UKGgGaAloD0MImfG20msTA8CUhpRSlGgVSzJoFkdArVofdZaFEnV9lChoBmgJaA9DCKnaboJvGv+/lIaUUpRoFUsyaBZHQK1Zj2dNFjN1fZQoaAZoCWgPQwj0GVBvRi0DwJSGlFKUaBVLMmgWR0CtXF4vnKW+dX2UKGgGaAloD0MI/U6TGW/r/7+UhpRSlGgVSzJoFkdArVu/HR1HOXV9lChoBmgJaA9DCBe2ZisvmQ/AlIaUUpRoFUsyaBZHQK1bJLpzLfV1fZQoaAZoCWgPQwhruTMTDDcSwJSGlFKUaBVLMmgWR0CtWpSmZVn3dX2UKGgGaAloD0MISBgGLLmKEMCUhpRSlGgVSzJoFkdArV2Nj5Kvm3V9lChoBmgJaA9DCHx+GCE8WgPAlIaUUpRoFUsyaBZHQK1c7rtVrAR1fZQoaAZoCWgPQwhwQEtXsM3+v5SGlFKUaBVLMmgWR0CtXFSSV4X5dX2UKGgGaAloD0MIiq4LPzhf/7+UhpRSlGgVSzJoFkdArVvEgMc6vXV9lChoBmgJaA9DCDz03a0sEQrAlIaUUpRoFUsyaBZHQK1etFqi48V1fZQoaAZoCWgPQwiBWaFI9/MOwJSGlFKUaBVLMmgWR0CtXhVB+nZTdX2UKGgGaAloD0MI647FNqnYEMCUhpRSlGgVSzJoFkdArV160rsjV3V9lChoBmgJaA9DCJmc2hmmtvy/lIaUUpRoFUsyaBZHQK1c67VawEB1fZQoaAZoCWgPQwi37uapDrkGwJSGlFKUaBVLMmgWR0CtX9AYYR/WdX2UKGgGaAloD0MIG9e/6zNnEsCUhpRSlGgVSzJoFkdArV8w99tuUHV9lChoBmgJaA9DCIhjXdxGw/u/lIaUUpRoFUsyaBZHQK1elp5eJHl1fZQoaAZoCWgPQwgG9wMeGAAMwJSGlFKUaBVLMmgWR0CtXgZvcafjdX2UKGgGaAloD0MIzR39L9fi/r+UhpRSlGgVSzJoFkdArWDvBWPtD3V9lChoBmgJaA9DCOuQm+EGXAjAlIaUUpRoFUsyaBZHQK1gT9Brvb51fZQoaAZoCWgPQwj5u3fUmDASwJSGlFKUaBVLMmgWR0CtX7VtGd7OdX2UKGgGaAloD0MIJv4o6swdAcCUhpRSlGgVSzJoFkdArV8lOymhunV9lChoBmgJaA9DCHtrYKsEC/e/lIaUUpRoFUsyaBZHQK1iCieNDMN1fZQoaAZoCWgPQwjtgVZgyOr8v5SGlFKUaBVLMmgWR0CtYWsmnfl7dX2UKGgGaAloD0MItXBZhc1A+r+UhpRSlGgVSzJoFkdArWDQsXizcHV9lChoBmgJaA9DCNhHp658FhHAlIaUUpRoFUsyaBZHQK1gQJZ4fOl1fZQoaAZoCWgPQwieRIR/EeQSwJSGlFKUaBVLMmgWR0CtY0gPNFBqdX2UKGgGaAloD0MI5bZ9j/pLBsCUhpRSlGgVSzJoFkdArWKqhi9ZinV9lChoBmgJaA9DCFKdDmQ9FQDAlIaUUpRoFUsyaBZHQK1iEPhAGB51fZQoaAZoCWgPQwh3K0t0likQwJSGlFKUaBVLMmgWR0CtYYGnn+yadX2UKGgGaAloD0MImgmGcw3z/b+UhpRSlGgVSzJoFkdArWRm5H3DenV9lChoBmgJaA9DCEcE4+DScQvAlIaUUpRoFUsyaBZHQK1jx9Wp6yB1fZQoaAZoCWgPQwiPN/ktOtn5v5SGlFKUaBVLMmgWR0CtYy26kIomdX2UKGgGaAloD0MIhV0UPfBxDMCUhpRSlGgVSzJoFkdArWKdndweeXV9lChoBmgJaA9DCAAapUv/IhXAlIaUUpRoFUsyaBZHQK1lvPTodMl1fZQoaAZoCWgPQwh5B3jSwqX+v5SGlFKUaBVLMmgWR0CtZR34j8k2dX2UKGgGaAloD0MInBn9aDil+7+UhpRSlGgVSzJoFkdArWSDoEB8yHV9lChoBmgJaA9DCBoyHqUS/gHAlIaUUpRoFUsyaBZHQK1j85Xlr/N1fZQoaAZoCWgPQwj0N6EQAcf9v5SGlFKUaBVLMmgWR0CtZteUILPVdX2UKGgGaAloD0MIwm1t4XnpBsCUhpRSlGgVSzJoFkdArWY4w/PgN3V9lChoBmgJaA9DCMbeiy/aQwLAlIaUUpRoFUsyaBZHQK1lnoB7u2J1fZQoaAZoCWgPQwirBfaYSIkEwJSGlFKUaBVLMmgWR0CtZQ6XjU/fdX2UKGgGaAloD0MInWSryylhAsCUhpRSlGgVSzJoFkdArWf/6hxo7HV9lChoBmgJaA9DCL0cdt8xbBTAlIaUUpRoFUsyaBZHQK1nYPaL4vh1fZQoaAZoCWgPQwiinGhXIQUYwJSGlFKUaBVLMmgWR0CtZsZ9Vmz0dX2UKGgGaAloD0MIl8gFZ/DHFMCUhpRSlGgVSzJoFkdArWY2XeFcp3V9lChoBmgJaA9DCLRZ9bnaKgDAlIaUUpRoFUsyaBZHQK1pHssQNCt1fZQoaAZoCWgPQwi7l/vkKEDxv5SGlFKUaBVLMmgWR0CtaH/7SApbdX2UKGgGaAloD0MIkBDlC1qIAMCUhpRSlGgVSzJoFkdArWflmJ3xF3V9lChoBmgJaA9DCD3yBwPPPfq/lIaUUpRoFUsyaBZHQK1nVW6shgV1fZQoaAZoCWgPQwhy++WTFcP+v5SGlFKUaBVLMmgWR0CtauGp2ll9dX2UKGgGaAloD0MIBFQ4glTqBMCUhpRSlGgVSzJoFkdArWpD5GjKxXV9lChoBmgJaA9DCIO+9PbnAgLAlIaUUpRoFUsyaBZHQK1pqvaDf3x1fZQoaAZoCWgPQwj9o2/SNMgIwJSGlFKUaBVLMmgWR0CtaR1dgOSXdX2UKGgGaAloD0MICahwBKkU/b+UhpRSlGgVSzJoFkdArWzEVrRBvHV9lChoBmgJaA9DCCfChqdXyvK/lIaUUpRoFUsyaBZHQK1sJhisnzB1fZQoaAZoCWgPQwhXk6espmv3v5SGlFKUaBVLMmgWR0Cta4yRB/qgdX2UKGgGaAloD0MIpOL/jqjQAMCUhpRSlGgVSzJoFkdArWr9UEPlMnV9lChoBmgJaA9DCFIN+z2xTve/lIaUUpRoFUsyaBZHQK1u2JAt4A11fZQoaAZoCWgPQwi5/fLJikECwJSGlFKUaBVLMmgWR0Ctbjp7LMcIdX2UKGgGaAloD0MIQC/cuTDSAsCUhpRSlGgVSzJoFkdArW2i3w1BMXV9lChoBmgJaA9DCBU6r7FLlPi/lIaUUpRoFUsyaBZHQK1tE9Pk7wN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}