File size: 5,275 Bytes
de8a10f d7564de de8a10f 56c5a3c d7564de de8a10f 56c5a3c 5c9e70d 56c5a3c 5c9e70d 56c5a3c d7564de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
---
language:
- en
license: apache-2.0
datasets:
- cerebras/SlimPajama-627B
- bigcode/starcoderdata
- OpenAssistant/oasst_top1_2023-08-25
model-index:
- name: TinyLlama-1.1B-Chat-v0.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 16.34
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 3.41
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 0.08
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.0
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 1.07
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v0.5
name: Open LLM Leaderboard
---
<div align="center">
# TinyLlama-1.1B
</div>
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐๐. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
#### This Model
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T).
The dataset used is [OpenAssistant/oasst_top1_2023-08-25](https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25) following the [chatml](https://github.com/openai/openai-python/blob/main/chatml.md) format.
#### How to use
You will need the transformers>=4.31
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
```
from transformers import AutoTokenizer
import transformers
import torch
model = "PY007/TinyLlama-1.1B-Chat-v0.5"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
CHAT_EOS_TOKEN_ID = 32002
prompt = "How to get in a good university?"
formatted_prompt = (
f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
)
sequences = pipeline(
formatted_prompt,
do_sample=True,
top_k=50,
top_p = 0.9,
num_return_sequences=1,
repetition_penalty=1.1,
max_new_tokens=1024,
eos_token_id=CHAT_EOS_TOKEN_ID,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TinyLlama__TinyLlama-1.1B-Chat-v0.5)
| Metric |Value|
|-------------------|----:|
|Avg. | 4.08|
|IFEval (0-Shot) |16.34|
|BBH (3-Shot) | 3.41|
|MATH Lvl 5 (4-Shot)| 0.08|
|GPQA (0-shot) | 0.00|
|MuSR (0-shot) | 3.57|
|MMLU-PRO (5-shot) | 1.07|
|