PY007 commited on
Commit
2fef611
·
1 Parent(s): 36b9dab

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -82
README.md CHANGED
@@ -1,96 +1,58 @@
1
  ---
2
- tags:
3
- - generated_from_trainer
4
- model-index:
5
- - name: TinyLlama-1.1B-Chat-v1.0
6
- results: []
 
 
7
  ---
 
8
 
9
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
- should probably proofread and complete it, then remove this comment. -->
11
 
12
- # TinyLlama-1.1B-Chat-v1.0
13
 
14
- This model was trained from scratch on the None dataset.
15
- It achieves the following results on the evaluation set:
16
- - Loss: 0.5138
17
- - Rewards/chosen: -0.0274
18
- - Rewards/rejected: -1.0362
19
- - Rewards/accuracies: 0.7381
20
- - Rewards/margins: 1.0087
21
- - Logps/rejected: -296.0739
22
- - Logps/chosen: -370.1298
23
- - Logits/rejected: -2.6565
24
- - Logits/chosen: -2.7074
25
 
26
- ## Model description
27
 
28
- More information needed
29
 
30
- ## Intended uses & limitations
 
 
31
 
32
- More information needed
33
 
34
- ## Training and evaluation data
 
 
35
 
36
- More information needed
 
 
 
37
 
38
- ## Training procedure
 
39
 
40
- ### Training hyperparameters
41
 
42
- The following hyperparameters were used during training:
43
- - learning_rate: 5e-07
44
- - train_batch_size: 8
45
- - eval_batch_size: 4
46
- - seed: 42
47
- - distributed_type: multi-GPU
48
- - num_devices: 8
49
- - total_train_batch_size: 64
50
- - total_eval_batch_size: 32
51
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
- - lr_scheduler_type: linear
53
- - lr_scheduler_warmup_ratio: 0.1
54
- - num_epochs: 3
55
-
56
- ### Training results
57
-
58
- | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
59
- |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
60
- | 0.6686 | 0.1 | 100 | 0.6668 | 0.0624 | -0.0106 | 0.6746 | 0.0730 | -285.8178 | -369.2313 | -2.7623 | -2.8330 |
61
- | 0.59 | 0.21 | 200 | 0.5995 | 0.1603 | -0.1926 | 0.6825 | 0.3530 | -287.6386 | -368.2522 | -2.7514 | -2.8180 |
62
- | 0.5843 | 0.31 | 300 | 0.5644 | 0.2269 | -0.3175 | 0.6905 | 0.5444 | -288.8868 | -367.5864 | -2.7305 | -2.7952 |
63
- | 0.5633 | 0.41 | 400 | 0.5476 | 0.2211 | -0.4312 | 0.7103 | 0.6523 | -290.0246 | -367.6447 | -2.7100 | -2.7725 |
64
- | 0.5224 | 0.52 | 500 | 0.5388 | 0.2702 | -0.4543 | 0.6984 | 0.7244 | -290.2547 | -367.1539 | -2.6919 | -2.7543 |
65
- | 0.5689 | 0.62 | 600 | 0.5326 | 0.3161 | -0.4312 | 0.7302 | 0.7473 | -290.0246 | -366.6946 | -2.6977 | -2.7596 |
66
- | 0.5556 | 0.72 | 700 | 0.5296 | 0.3133 | -0.4431 | 0.7143 | 0.7565 | -290.1436 | -366.7222 | -2.6960 | -2.7563 |
67
- | 0.5368 | 0.83 | 800 | 0.5235 | 0.3087 | -0.5008 | 0.7183 | 0.8096 | -290.7203 | -366.7679 | -2.6863 | -2.7455 |
68
- | 0.5324 | 0.93 | 900 | 0.5231 | 0.3330 | -0.4764 | 0.7381 | 0.8094 | -290.4763 | -366.5252 | -2.6944 | -2.7532 |
69
- | 0.4667 | 1.03 | 1000 | 0.5211 | 0.3442 | -0.4815 | 0.7302 | 0.8257 | -290.5269 | -366.4131 | -2.6890 | -2.7466 |
70
- | 0.4516 | 1.14 | 1100 | 0.5197 | 0.2843 | -0.6031 | 0.7381 | 0.8874 | -291.7431 | -367.0122 | -2.6770 | -2.7325 |
71
- | 0.4176 | 1.24 | 1200 | 0.5184 | 0.2116 | -0.7161 | 0.7460 | 0.9276 | -292.8727 | -367.7397 | -2.6729 | -2.7277 |
72
- | 0.446 | 1.34 | 1300 | 0.5187 | 0.2095 | -0.6963 | 0.7421 | 0.9058 | -292.6750 | -367.7603 | -2.6740 | -2.7278 |
73
- | 0.472 | 1.44 | 1400 | 0.5154 | 0.2233 | -0.6454 | 0.7540 | 0.8686 | -292.1659 | -367.6227 | -2.6716 | -2.7264 |
74
- | 0.4425 | 1.55 | 1500 | 0.5158 | 0.1986 | -0.7079 | 0.7381 | 0.9065 | -292.7915 | -367.8694 | -2.6695 | -2.7244 |
75
- | 0.434 | 1.65 | 1600 | 0.5148 | 0.2037 | -0.6841 | 0.7381 | 0.8878 | -292.5535 | -367.8188 | -2.6639 | -2.7187 |
76
- | 0.4209 | 1.75 | 1700 | 0.5146 | 0.1297 | -0.7819 | 0.7460 | 0.9116 | -293.5308 | -368.5582 | -2.6636 | -2.7185 |
77
- | 0.4128 | 1.86 | 1800 | 0.5129 | 0.1418 | -0.7822 | 0.7381 | 0.9240 | -293.5338 | -368.4372 | -2.6651 | -2.7194 |
78
- | 0.4685 | 1.96 | 1900 | 0.5125 | 0.0967 | -0.8256 | 0.7421 | 0.9223 | -293.9677 | -368.8879 | -2.6709 | -2.7248 |
79
- | 0.3605 | 2.06 | 2000 | 0.5130 | 0.0627 | -0.8947 | 0.7302 | 0.9574 | -294.6591 | -369.2281 | -2.6689 | -2.7211 |
80
- | 0.3463 | 2.17 | 2100 | 0.5123 | 0.0453 | -0.9465 | 0.7421 | 0.9918 | -295.1770 | -369.4025 | -2.6709 | -2.7218 |
81
- | 0.362 | 2.27 | 2200 | 0.5125 | 0.0174 | -0.9774 | 0.7381 | 0.9948 | -295.4861 | -369.6811 | -2.6628 | -2.7140 |
82
- | 0.354 | 2.37 | 2300 | 0.5148 | 0.0053 | -0.9919 | 0.7421 | 0.9972 | -295.6311 | -369.8024 | -2.6562 | -2.7070 |
83
- | 0.3539 | 2.48 | 2400 | 0.5144 | -0.0049 | -0.9987 | 0.7381 | 0.9939 | -295.6994 | -369.9039 | -2.6557 | -2.7070 |
84
- | 0.3374 | 2.58 | 2500 | 0.5143 | -0.0015 | -1.0170 | 0.75 | 1.0156 | -295.8826 | -369.8703 | -2.6616 | -2.7128 |
85
- | 0.3417 | 2.68 | 2600 | 0.5137 | 0.0000 | -1.0041 | 0.7341 | 1.0041 | -295.7533 | -369.8551 | -2.6605 | -2.7118 |
86
- | 0.3312 | 2.79 | 2700 | 0.5140 | -0.0197 | -1.0285 | 0.7302 | 1.0089 | -295.9977 | -370.0519 | -2.6563 | -2.7071 |
87
- | 0.3643 | 2.89 | 2800 | 0.5146 | -0.0233 | -1.0285 | 0.7421 | 1.0052 | -295.9974 | -370.0886 | -2.6552 | -2.7063 |
88
- | 0.3322 | 2.99 | 2900 | 0.5142 | -0.0293 | -1.0337 | 0.7302 | 1.0045 | -296.0496 | -370.1480 | -2.6573 | -2.7079 |
89
-
90
-
91
- ### Framework versions
92
-
93
- - Transformers 4.35.0
94
- - Pytorch 2.1.2+cu121
95
- - Datasets 2.14.6
96
- - Tokenizers 0.14.1
 
1
  ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - cerebras/SlimPajama-627B
5
+ - bigcode/starcoderdata
6
+ - OpenAssistant/oasst_top1_2023-08-25
7
+ language:
8
+ - en
9
  ---
10
+ <div align="center">
11
 
12
+ # TinyLlama-1.1B
13
+ </div>
14
 
15
+ https://github.com/jzhang38/TinyLlama
16
 
17
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
 
 
 
 
 
 
 
 
 
 
18
 
 
19
 
20
+ We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
21
 
22
+ #### This Model
23
+ This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
24
+ We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
25
 
 
26
 
27
+ #### How to use
28
+ You will need the transformers>=4.34
29
+ Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
30
 
31
+ ```python
32
+ # Install transformers from source - only needed for versions <= v4.34
33
+ # pip install git+https://github.com/huggingface/transformers.git
34
+ # pip install accelerate
35
 
36
+ import torch
37
+ from transformers import pipeline
38
 
39
+ pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
40
 
41
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
42
+ messages = [
43
+ {
44
+ "role": "system",
45
+ "content": "You are a friendly chatbot who always responds in the style of a pirate",
46
+ },
47
+ {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
48
+ ]
49
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
50
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
51
+ print(outputs[0]["generated_text"])
52
+ # <|system|>
53
+ # You are a friendly chatbot who always responds in the style of a pirate.</s>
54
+ # <|user|>
55
+ # How many helicopters can a human eat in one sitting?</s>
56
+ # <|assistant|>
57
+ # ...
58
+ ```