Update README.md
Browse files
README.md
CHANGED
@@ -1,96 +1,58 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
-
|
6 |
-
|
|
|
|
|
7 |
---
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
It achieves the following results on the evaluation set:
|
16 |
-
- Loss: 0.5138
|
17 |
-
- Rewards/chosen: -0.0274
|
18 |
-
- Rewards/rejected: -1.0362
|
19 |
-
- Rewards/accuracies: 0.7381
|
20 |
-
- Rewards/margins: 1.0087
|
21 |
-
- Logps/rejected: -296.0739
|
22 |
-
- Logps/chosen: -370.1298
|
23 |
-
- Logits/rejected: -2.6565
|
24 |
-
- Logits/chosen: -2.7074
|
25 |
|
26 |
-
## Model description
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
More information needed
|
33 |
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
| 0.6686 | 0.1 | 100 | 0.6668 | 0.0624 | -0.0106 | 0.6746 | 0.0730 | -285.8178 | -369.2313 | -2.7623 | -2.8330 |
|
61 |
-
| 0.59 | 0.21 | 200 | 0.5995 | 0.1603 | -0.1926 | 0.6825 | 0.3530 | -287.6386 | -368.2522 | -2.7514 | -2.8180 |
|
62 |
-
| 0.5843 | 0.31 | 300 | 0.5644 | 0.2269 | -0.3175 | 0.6905 | 0.5444 | -288.8868 | -367.5864 | -2.7305 | -2.7952 |
|
63 |
-
| 0.5633 | 0.41 | 400 | 0.5476 | 0.2211 | -0.4312 | 0.7103 | 0.6523 | -290.0246 | -367.6447 | -2.7100 | -2.7725 |
|
64 |
-
| 0.5224 | 0.52 | 500 | 0.5388 | 0.2702 | -0.4543 | 0.6984 | 0.7244 | -290.2547 | -367.1539 | -2.6919 | -2.7543 |
|
65 |
-
| 0.5689 | 0.62 | 600 | 0.5326 | 0.3161 | -0.4312 | 0.7302 | 0.7473 | -290.0246 | -366.6946 | -2.6977 | -2.7596 |
|
66 |
-
| 0.5556 | 0.72 | 700 | 0.5296 | 0.3133 | -0.4431 | 0.7143 | 0.7565 | -290.1436 | -366.7222 | -2.6960 | -2.7563 |
|
67 |
-
| 0.5368 | 0.83 | 800 | 0.5235 | 0.3087 | -0.5008 | 0.7183 | 0.8096 | -290.7203 | -366.7679 | -2.6863 | -2.7455 |
|
68 |
-
| 0.5324 | 0.93 | 900 | 0.5231 | 0.3330 | -0.4764 | 0.7381 | 0.8094 | -290.4763 | -366.5252 | -2.6944 | -2.7532 |
|
69 |
-
| 0.4667 | 1.03 | 1000 | 0.5211 | 0.3442 | -0.4815 | 0.7302 | 0.8257 | -290.5269 | -366.4131 | -2.6890 | -2.7466 |
|
70 |
-
| 0.4516 | 1.14 | 1100 | 0.5197 | 0.2843 | -0.6031 | 0.7381 | 0.8874 | -291.7431 | -367.0122 | -2.6770 | -2.7325 |
|
71 |
-
| 0.4176 | 1.24 | 1200 | 0.5184 | 0.2116 | -0.7161 | 0.7460 | 0.9276 | -292.8727 | -367.7397 | -2.6729 | -2.7277 |
|
72 |
-
| 0.446 | 1.34 | 1300 | 0.5187 | 0.2095 | -0.6963 | 0.7421 | 0.9058 | -292.6750 | -367.7603 | -2.6740 | -2.7278 |
|
73 |
-
| 0.472 | 1.44 | 1400 | 0.5154 | 0.2233 | -0.6454 | 0.7540 | 0.8686 | -292.1659 | -367.6227 | -2.6716 | -2.7264 |
|
74 |
-
| 0.4425 | 1.55 | 1500 | 0.5158 | 0.1986 | -0.7079 | 0.7381 | 0.9065 | -292.7915 | -367.8694 | -2.6695 | -2.7244 |
|
75 |
-
| 0.434 | 1.65 | 1600 | 0.5148 | 0.2037 | -0.6841 | 0.7381 | 0.8878 | -292.5535 | -367.8188 | -2.6639 | -2.7187 |
|
76 |
-
| 0.4209 | 1.75 | 1700 | 0.5146 | 0.1297 | -0.7819 | 0.7460 | 0.9116 | -293.5308 | -368.5582 | -2.6636 | -2.7185 |
|
77 |
-
| 0.4128 | 1.86 | 1800 | 0.5129 | 0.1418 | -0.7822 | 0.7381 | 0.9240 | -293.5338 | -368.4372 | -2.6651 | -2.7194 |
|
78 |
-
| 0.4685 | 1.96 | 1900 | 0.5125 | 0.0967 | -0.8256 | 0.7421 | 0.9223 | -293.9677 | -368.8879 | -2.6709 | -2.7248 |
|
79 |
-
| 0.3605 | 2.06 | 2000 | 0.5130 | 0.0627 | -0.8947 | 0.7302 | 0.9574 | -294.6591 | -369.2281 | -2.6689 | -2.7211 |
|
80 |
-
| 0.3463 | 2.17 | 2100 | 0.5123 | 0.0453 | -0.9465 | 0.7421 | 0.9918 | -295.1770 | -369.4025 | -2.6709 | -2.7218 |
|
81 |
-
| 0.362 | 2.27 | 2200 | 0.5125 | 0.0174 | -0.9774 | 0.7381 | 0.9948 | -295.4861 | -369.6811 | -2.6628 | -2.7140 |
|
82 |
-
| 0.354 | 2.37 | 2300 | 0.5148 | 0.0053 | -0.9919 | 0.7421 | 0.9972 | -295.6311 | -369.8024 | -2.6562 | -2.7070 |
|
83 |
-
| 0.3539 | 2.48 | 2400 | 0.5144 | -0.0049 | -0.9987 | 0.7381 | 0.9939 | -295.6994 | -369.9039 | -2.6557 | -2.7070 |
|
84 |
-
| 0.3374 | 2.58 | 2500 | 0.5143 | -0.0015 | -1.0170 | 0.75 | 1.0156 | -295.8826 | -369.8703 | -2.6616 | -2.7128 |
|
85 |
-
| 0.3417 | 2.68 | 2600 | 0.5137 | 0.0000 | -1.0041 | 0.7341 | 1.0041 | -295.7533 | -369.8551 | -2.6605 | -2.7118 |
|
86 |
-
| 0.3312 | 2.79 | 2700 | 0.5140 | -0.0197 | -1.0285 | 0.7302 | 1.0089 | -295.9977 | -370.0519 | -2.6563 | -2.7071 |
|
87 |
-
| 0.3643 | 2.89 | 2800 | 0.5146 | -0.0233 | -1.0285 | 0.7421 | 1.0052 | -295.9974 | -370.0886 | -2.6552 | -2.7063 |
|
88 |
-
| 0.3322 | 2.99 | 2900 | 0.5142 | -0.0293 | -1.0337 | 0.7302 | 1.0045 | -296.0496 | -370.1480 | -2.6573 | -2.7079 |
|
89 |
-
|
90 |
-
|
91 |
-
### Framework versions
|
92 |
-
|
93 |
-
- Transformers 4.35.0
|
94 |
-
- Pytorch 2.1.2+cu121
|
95 |
-
- Datasets 2.14.6
|
96 |
-
- Tokenizers 0.14.1
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- cerebras/SlimPajama-627B
|
5 |
+
- bigcode/starcoderdata
|
6 |
+
- OpenAssistant/oasst_top1_2023-08-25
|
7 |
+
language:
|
8 |
+
- en
|
9 |
---
|
10 |
+
<div align="center">
|
11 |
|
12 |
+
# TinyLlama-1.1B
|
13 |
+
</div>
|
14 |
|
15 |
+
https://github.com/jzhang38/TinyLlama
|
16 |
|
17 |
+
The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
19 |
|
20 |
+
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
|
21 |
|
22 |
+
#### This Model
|
23 |
+
This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
|
24 |
+
We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
|
25 |
|
|
|
26 |
|
27 |
+
#### How to use
|
28 |
+
You will need the transformers>=4.34
|
29 |
+
Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
|
30 |
|
31 |
+
```python
|
32 |
+
# Install transformers from source - only needed for versions <= v4.34
|
33 |
+
# pip install git+https://github.com/huggingface/transformers.git
|
34 |
+
# pip install accelerate
|
35 |
|
36 |
+
import torch
|
37 |
+
from transformers import pipeline
|
38 |
|
39 |
+
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
|
40 |
|
41 |
+
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
|
42 |
+
messages = [
|
43 |
+
{
|
44 |
+
"role": "system",
|
45 |
+
"content": "You are a friendly chatbot who always responds in the style of a pirate",
|
46 |
+
},
|
47 |
+
{"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
48 |
+
]
|
49 |
+
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
50 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
51 |
+
print(outputs[0]["generated_text"])
|
52 |
+
# <|system|>
|
53 |
+
# You are a friendly chatbot who always responds in the style of a pirate.</s>
|
54 |
+
# <|user|>
|
55 |
+
# How many helicopters can a human eat in one sitting?</s>
|
56 |
+
# <|assistant|>
|
57 |
+
# ...
|
58 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|