ToastyPigeon commited on
Commit
ad8aa24
·
verified ·
1 Parent(s): 466c724

Training in progress, step 296, checkpoint

Browse files
checkpoint-296/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Mistral-Small-Instruct-2409
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-296/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Mistral-Small-Instruct-2409",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 64,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.25,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 32,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "gate_proj",
27
+ "up_proj",
28
+ "q_proj",
29
+ "k_proj",
30
+ "down_proj",
31
+ "v_proj",
32
+ "o_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-296/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:052d9fedaf0fa6a741029ff6a0685fb89390397bc3cc317b1ef6c135bb628718
3
+ size 381788248
checkpoint-296/global_step296/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb98fc1364da3c1c33f20462b187b0cd2ef40cbdd068cb60d176e1ad6f2df7f5
3
+ size 337530064
checkpoint-296/global_step296/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1394758f4f02ce1a761b558e0edd1d1331ed7b938055de65bab53e77ed8d218
3
+ size 337530064
checkpoint-296/global_step296/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a79abebd6461818d4090d4b1416c9a3f878374fd5b1aee5b3f5f8a9cef94ad9b
3
+ size 337530064
checkpoint-296/global_step296/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16d798065d5444afd41c03aea0c44d6da60c0dd912d4bab36c312ea5a60d7882
3
+ size 337530064
checkpoint-296/global_step296/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcf4b62edd46f064c027c7d8381013a57c737503839803ee4fa0b8536c3b5704
3
+ size 348711702
checkpoint-296/global_step296/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40540f91660eb8675322d9d2c2541786e760c19744ad225bfca1140706026d99
3
+ size 348711702
checkpoint-296/global_step296/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92fb36f9f7b2451001d4180de258372f464d89ca9285da9720da3edc60dd0228
3
+ size 348711702
checkpoint-296/global_step296/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f92a657666174e5b9aface7200c3aca7a2c02d4f343b7f3bc0127a8996c58d6f
3
+ size 348711702
checkpoint-296/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step296
checkpoint-296/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:029651baaee62ba13d0fefefdd856356c4b1d62bd431e2f912bc801aaceffa2d
3
+ size 14960
checkpoint-296/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d2e11a8f992ade71a4a3f9278a11ad46f52c38226dd6bccd059f4cec511de2f
3
+ size 14960
checkpoint-296/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3cacbfa33ee9e24f3a00ba0a3bd02d2abfeb4b0db4756080f14e6e7d34f1aa3a
3
+ size 14960
checkpoint-296/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d365ab3c8428ab021faf6545a150416f07211c3ea57155495abdd155bdc72a99
3
+ size 14960
checkpoint-296/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5730af9c278a41d02afecd2348635d0a61707085122dd2733b7e78eddf91c693
3
+ size 1064
checkpoint-296/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[control_748]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-296/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-296/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59f95e28944c062244741268596badc900df86c7f5ded05088d2da22a7379e06
3
+ size 587583
checkpoint-296/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-296/trainer_state.json ADDED
@@ -0,0 +1,2185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 30,
6
+ "global_step": 296,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0033783783783783786,
13
+ "grad_norm": 1.4937225174709319,
14
+ "learning_rate": 2.5e-06,
15
+ "loss": 2.1185,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0033783783783783786,
20
+ "eval_loss": 2.0952866077423096,
21
+ "eval_runtime": 187.5733,
22
+ "eval_samples_per_second": 0.267,
23
+ "eval_steps_per_second": 0.069,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.006756756756756757,
28
+ "grad_norm": 1.442277502174201,
29
+ "learning_rate": 5e-06,
30
+ "loss": 2.1679,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.010135135135135136,
35
+ "grad_norm": 1.4361264107689526,
36
+ "learning_rate": 7.5e-06,
37
+ "loss": 2.1475,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.013513513513513514,
42
+ "grad_norm": 1.5925067561400204,
43
+ "learning_rate": 1e-05,
44
+ "loss": 2.1111,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.016891891891891893,
49
+ "grad_norm": 1.5729343116389016,
50
+ "learning_rate": 1.25e-05,
51
+ "loss": 2.1772,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02027027027027027,
56
+ "grad_norm": 0.77386625695677,
57
+ "learning_rate": 1.5e-05,
58
+ "loss": 2.1445,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.02364864864864865,
63
+ "grad_norm": 0.9687092422157498,
64
+ "learning_rate": 1.75e-05,
65
+ "loss": 2.0929,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.02702702702702703,
70
+ "grad_norm": 0.5745308246234537,
71
+ "learning_rate": 2e-05,
72
+ "loss": 2.1085,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.030405405405405407,
77
+ "grad_norm": 0.7880273258575979,
78
+ "learning_rate": 2.25e-05,
79
+ "loss": 2.1717,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.033783783783783786,
84
+ "grad_norm": 0.5987395071382063,
85
+ "learning_rate": 2.5e-05,
86
+ "loss": 2.074,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.037162162162162164,
91
+ "grad_norm": 0.8312307017045393,
92
+ "learning_rate": 2.7500000000000004e-05,
93
+ "loss": 2.2338,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04054054054054054,
98
+ "grad_norm": 0.7733440491356615,
99
+ "learning_rate": 3e-05,
100
+ "loss": 2.2148,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.04391891891891892,
105
+ "grad_norm": 0.7510878886656168,
106
+ "learning_rate": 3.2500000000000004e-05,
107
+ "loss": 2.243,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.0472972972972973,
112
+ "grad_norm": 0.6210806018904155,
113
+ "learning_rate": 3.5e-05,
114
+ "loss": 1.9863,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.05067567567567568,
119
+ "grad_norm": 1.018373738736693,
120
+ "learning_rate": 3.7500000000000003e-05,
121
+ "loss": 2.0294,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.05405405405405406,
126
+ "grad_norm": 0.771759792529477,
127
+ "learning_rate": 4e-05,
128
+ "loss": 2.0353,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.057432432432432436,
133
+ "grad_norm": 0.5625682320002908,
134
+ "learning_rate": 4.25e-05,
135
+ "loss": 2.0775,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.060810810810810814,
140
+ "grad_norm": 0.5157565411105806,
141
+ "learning_rate": 4.5e-05,
142
+ "loss": 2.1791,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.06418918918918919,
147
+ "grad_norm": 0.8173537204599863,
148
+ "learning_rate": 4.75e-05,
149
+ "loss": 2.0549,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.06756756756756757,
154
+ "grad_norm": 2.5851976259061664,
155
+ "learning_rate": 5e-05,
156
+ "loss": 2.0757,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.07094594594594594,
161
+ "grad_norm": 0.5130578194248145,
162
+ "learning_rate": 4.999854243002125e-05,
163
+ "loss": 2.2505,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.07432432432432433,
168
+ "grad_norm": 0.5786770218696188,
169
+ "learning_rate": 4.999416990893036e-05,
170
+ "loss": 2.2533,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.0777027027027027,
175
+ "grad_norm": 0.8219446198677083,
176
+ "learning_rate": 4.998688300323891e-05,
177
+ "loss": 2.1092,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.08108108108108109,
182
+ "grad_norm": 0.7123342305131811,
183
+ "learning_rate": 4.997668265705137e-05,
184
+ "loss": 2.3369,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.08445945945945946,
189
+ "grad_norm": 0.44584577341815756,
190
+ "learning_rate": 4.9963570191942696e-05,
191
+ "loss": 2.0125,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.08783783783783784,
196
+ "grad_norm": 0.5308641065159894,
197
+ "learning_rate": 4.994754730678713e-05,
198
+ "loss": 2.0653,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.09121621621621621,
203
+ "grad_norm": 0.4833891468070717,
204
+ "learning_rate": 4.992861607753817e-05,
205
+ "loss": 2.0177,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.0945945945945946,
210
+ "grad_norm": 0.4487741255853019,
211
+ "learning_rate": 4.9906778956959454e-05,
212
+ "loss": 1.9773,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.09797297297297297,
217
+ "grad_norm": 0.7070413556606907,
218
+ "learning_rate": 4.988203877430713e-05,
219
+ "loss": 2.0163,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.10135135135135136,
224
+ "grad_norm": 0.6433406570980086,
225
+ "learning_rate": 4.985439873496321e-05,
226
+ "loss": 2.055,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.10135135135135136,
231
+ "eval_loss": 2.022883653640747,
232
+ "eval_runtime": 194.2976,
233
+ "eval_samples_per_second": 0.257,
234
+ "eval_steps_per_second": 0.067,
235
+ "step": 30
236
+ },
237
+ {
238
+ "epoch": 0.10472972972972973,
239
+ "grad_norm": 1.9573381693992367,
240
+ "learning_rate": 4.982386242002024e-05,
241
+ "loss": 2.3371,
242
+ "step": 31
243
+ },
244
+ {
245
+ "epoch": 0.10810810810810811,
246
+ "grad_norm": 1.6578265269127788,
247
+ "learning_rate": 4.979043378581744e-05,
248
+ "loss": 2.1288,
249
+ "step": 32
250
+ },
251
+ {
252
+ "epoch": 0.11148648648648649,
253
+ "grad_norm": 0.5544836623908992,
254
+ "learning_rate": 4.975411716342802e-05,
255
+ "loss": 2.1887,
256
+ "step": 33
257
+ },
258
+ {
259
+ "epoch": 0.11486486486486487,
260
+ "grad_norm": 0.5455040506142,
261
+ "learning_rate": 4.971491725809807e-05,
262
+ "loss": 2.1214,
263
+ "step": 34
264
+ },
265
+ {
266
+ "epoch": 0.11824324324324324,
267
+ "grad_norm": 0.5065209751020103,
268
+ "learning_rate": 4.967283914863693e-05,
269
+ "loss": 2.1692,
270
+ "step": 35
271
+ },
272
+ {
273
+ "epoch": 0.12162162162162163,
274
+ "grad_norm": 0.6453232517165945,
275
+ "learning_rate": 4.96278882867592e-05,
276
+ "loss": 2.0598,
277
+ "step": 36
278
+ },
279
+ {
280
+ "epoch": 0.125,
281
+ "grad_norm": 1.1731862208697716,
282
+ "learning_rate": 4.9580070496378364e-05,
283
+ "loss": 2.2156,
284
+ "step": 37
285
+ },
286
+ {
287
+ "epoch": 0.12837837837837837,
288
+ "grad_norm": 0.7667101172051888,
289
+ "learning_rate": 4.952939197285227e-05,
290
+ "loss": 2.1392,
291
+ "step": 38
292
+ },
293
+ {
294
+ "epoch": 0.13175675675675674,
295
+ "grad_norm": 0.41781856442196297,
296
+ "learning_rate": 4.947585928218041e-05,
297
+ "loss": 2.1534,
298
+ "step": 39
299
+ },
300
+ {
301
+ "epoch": 0.13513513513513514,
302
+ "grad_norm": 0.5945736341225079,
303
+ "learning_rate": 4.9419479360153286e-05,
304
+ "loss": 1.9795,
305
+ "step": 40
306
+ },
307
+ {
308
+ "epoch": 0.13851351351351351,
309
+ "grad_norm": 0.6467707595603454,
310
+ "learning_rate": 4.936025951145368e-05,
311
+ "loss": 2.0017,
312
+ "step": 41
313
+ },
314
+ {
315
+ "epoch": 0.14189189189189189,
316
+ "grad_norm": 0.5109600024808127,
317
+ "learning_rate": 4.929820740871039e-05,
318
+ "loss": 2.2144,
319
+ "step": 42
320
+ },
321
+ {
322
+ "epoch": 0.14527027027027026,
323
+ "grad_norm": 1.0548277894819795,
324
+ "learning_rate": 4.9233331091504034e-05,
325
+ "loss": 2.0657,
326
+ "step": 43
327
+ },
328
+ {
329
+ "epoch": 0.14864864864864866,
330
+ "grad_norm": 0.6580975841596574,
331
+ "learning_rate": 4.916563896532549e-05,
332
+ "loss": 2.1431,
333
+ "step": 44
334
+ },
335
+ {
336
+ "epoch": 0.15202702702702703,
337
+ "grad_norm": 0.3988619886160755,
338
+ "learning_rate": 4.9095139800486824e-05,
339
+ "loss": 2.0123,
340
+ "step": 45
341
+ },
342
+ {
343
+ "epoch": 0.1554054054054054,
344
+ "grad_norm": 0.5209858406284475,
345
+ "learning_rate": 4.9021842730985036e-05,
346
+ "loss": 2.2487,
347
+ "step": 46
348
+ },
349
+ {
350
+ "epoch": 0.15878378378378377,
351
+ "grad_norm": 0.5433634333987769,
352
+ "learning_rate": 4.894575725331862e-05,
353
+ "loss": 2.1736,
354
+ "step": 47
355
+ },
356
+ {
357
+ "epoch": 0.16216216216216217,
358
+ "grad_norm": 0.5109855249570185,
359
+ "learning_rate": 4.886689322525719e-05,
360
+ "loss": 2.0823,
361
+ "step": 48
362
+ },
363
+ {
364
+ "epoch": 0.16554054054054054,
365
+ "grad_norm": 0.6194335580813743,
366
+ "learning_rate": 4.878526086456426e-05,
367
+ "loss": 2.1036,
368
+ "step": 49
369
+ },
370
+ {
371
+ "epoch": 0.16891891891891891,
372
+ "grad_norm": 1.0780413583147488,
373
+ "learning_rate": 4.8700870747673466e-05,
374
+ "loss": 2.0302,
375
+ "step": 50
376
+ },
377
+ {
378
+ "epoch": 0.17229729729729729,
379
+ "grad_norm": 0.580340495769622,
380
+ "learning_rate": 4.8613733808318204e-05,
381
+ "loss": 2.1776,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.17567567567567569,
386
+ "grad_norm": 0.8129429382764808,
387
+ "learning_rate": 4.85238613361151e-05,
388
+ "loss": 2.0965,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.17905405405405406,
393
+ "grad_norm": 0.7779782864994534,
394
+ "learning_rate": 4.8431264975101245e-05,
395
+ "loss": 2.1582,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.18243243243243243,
400
+ "grad_norm": 0.8528745581545691,
401
+ "learning_rate": 4.8335956722225616e-05,
402
+ "loss": 2.1511,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.1858108108108108,
407
+ "grad_norm": 0.49188324413548323,
408
+ "learning_rate": 4.823794892579471e-05,
409
+ "loss": 2.1583,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.1891891891891892,
414
+ "grad_norm": 0.724195478643155,
415
+ "learning_rate": 4.8137254283872696e-05,
416
+ "loss": 1.9438,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.19256756756756757,
421
+ "grad_norm": 0.8754624301347438,
422
+ "learning_rate": 4.803388584263618e-05,
423
+ "loss": 2.1349,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.19594594594594594,
428
+ "grad_norm": 0.4870044791836658,
429
+ "learning_rate": 4.7927856994684e-05,
430
+ "loss": 2.0239,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.19932432432432431,
435
+ "grad_norm": 0.5041896039366629,
436
+ "learning_rate": 4.781918147730199e-05,
437
+ "loss": 2.0841,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.20270270270270271,
442
+ "grad_norm": 0.4874068239264915,
443
+ "learning_rate": 4.7707873370683163e-05,
444
+ "loss": 2.1407,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.20270270270270271,
449
+ "eval_loss": 2.015751838684082,
450
+ "eval_runtime": 196.268,
451
+ "eval_samples_per_second": 0.255,
452
+ "eval_steps_per_second": 0.066,
453
+ "step": 60
454
+ },
455
+ {
456
+ "epoch": 0.20608108108108109,
457
+ "grad_norm": 0.5424018707478311,
458
+ "learning_rate": 4.75939470961035e-05,
459
+ "loss": 2.186,
460
+ "step": 61
461
+ },
462
+ {
463
+ "epoch": 0.20945945945945946,
464
+ "grad_norm": 0.5115180976703219,
465
+ "learning_rate": 4.747741741405344e-05,
466
+ "loss": 2.2014,
467
+ "step": 62
468
+ },
469
+ {
470
+ "epoch": 0.21283783783783783,
471
+ "grad_norm": 0.5058558197015601,
472
+ "learning_rate": 4.735829942232555e-05,
473
+ "loss": 2.0927,
474
+ "step": 63
475
+ },
476
+ {
477
+ "epoch": 0.21621621621621623,
478
+ "grad_norm": 0.8021043767946636,
479
+ "learning_rate": 4.7236608554058375e-05,
480
+ "loss": 2.1884,
481
+ "step": 64
482
+ },
483
+ {
484
+ "epoch": 0.2195945945945946,
485
+ "grad_norm": 0.5293842363703689,
486
+ "learning_rate": 4.711236057573691e-05,
487
+ "loss": 2.0714,
488
+ "step": 65
489
+ },
490
+ {
491
+ "epoch": 0.22297297297297297,
492
+ "grad_norm": 0.48722486629288786,
493
+ "learning_rate": 4.6985571585149876e-05,
494
+ "loss": 2.0562,
495
+ "step": 66
496
+ },
497
+ {
498
+ "epoch": 0.22635135135135134,
499
+ "grad_norm": 0.4279248526312935,
500
+ "learning_rate": 4.685625800930406e-05,
501
+ "loss": 2.0847,
502
+ "step": 67
503
+ },
504
+ {
505
+ "epoch": 0.22972972972972974,
506
+ "grad_norm": 0.5130161800768928,
507
+ "learning_rate": 4.6724436602296e-05,
508
+ "loss": 2.0617,
509
+ "step": 68
510
+ },
511
+ {
512
+ "epoch": 0.23310810810810811,
513
+ "grad_norm": 0.7460272297512813,
514
+ "learning_rate": 4.659012444314128e-05,
515
+ "loss": 2.1029,
516
+ "step": 69
517
+ },
518
+ {
519
+ "epoch": 0.23648648648648649,
520
+ "grad_norm": 0.4943699960691202,
521
+ "learning_rate": 4.645333893356176e-05,
522
+ "loss": 1.9948,
523
+ "step": 70
524
+ },
525
+ {
526
+ "epoch": 0.23986486486486486,
527
+ "grad_norm": 0.6350670407835639,
528
+ "learning_rate": 4.6314097795731e-05,
529
+ "loss": 2.0935,
530
+ "step": 71
531
+ },
532
+ {
533
+ "epoch": 0.24324324324324326,
534
+ "grad_norm": 0.542940777570525,
535
+ "learning_rate": 4.6172419069978065e-05,
536
+ "loss": 2.0267,
537
+ "step": 72
538
+ },
539
+ {
540
+ "epoch": 0.24662162162162163,
541
+ "grad_norm": 0.4567422527911003,
542
+ "learning_rate": 4.602832111245029e-05,
543
+ "loss": 1.9971,
544
+ "step": 73
545
+ },
546
+ {
547
+ "epoch": 0.25,
548
+ "grad_norm": 0.4699317313725709,
549
+ "learning_rate": 4.5881822592734946e-05,
550
+ "loss": 2.1758,
551
+ "step": 74
552
+ },
553
+ {
554
+ "epoch": 0.2533783783783784,
555
+ "grad_norm": 0.6913326755097541,
556
+ "learning_rate": 4.573294249144041e-05,
557
+ "loss": 2.1574,
558
+ "step": 75
559
+ },
560
+ {
561
+ "epoch": 0.25675675675675674,
562
+ "grad_norm": 0.4362574963180428,
563
+ "learning_rate": 4.5581700097737015e-05,
564
+ "loss": 2.0498,
565
+ "step": 76
566
+ },
567
+ {
568
+ "epoch": 0.26013513513513514,
569
+ "grad_norm": 0.6932798791839507,
570
+ "learning_rate": 4.542811500685785e-05,
571
+ "loss": 2.0777,
572
+ "step": 77
573
+ },
574
+ {
575
+ "epoch": 0.2635135135135135,
576
+ "grad_norm": 0.4469936094893796,
577
+ "learning_rate": 4.527220711756007e-05,
578
+ "loss": 2.1046,
579
+ "step": 78
580
+ },
581
+ {
582
+ "epoch": 0.2668918918918919,
583
+ "grad_norm": 0.5112163825070385,
584
+ "learning_rate": 4.511399662954667e-05,
585
+ "loss": 2.0955,
586
+ "step": 79
587
+ },
588
+ {
589
+ "epoch": 0.2702702702702703,
590
+ "grad_norm": 0.4272672573543929,
591
+ "learning_rate": 4.4953504040849445e-05,
592
+ "loss": 2.1927,
593
+ "step": 80
594
+ },
595
+ {
596
+ "epoch": 0.27364864864864863,
597
+ "grad_norm": 0.4203647309881028,
598
+ "learning_rate": 4.479075014517321e-05,
599
+ "loss": 2.0421,
600
+ "step": 81
601
+ },
602
+ {
603
+ "epoch": 0.27702702702702703,
604
+ "grad_norm": 0.5896256230009808,
605
+ "learning_rate": 4.462575602920171e-05,
606
+ "loss": 2.109,
607
+ "step": 82
608
+ },
609
+ {
610
+ "epoch": 0.28040540540540543,
611
+ "grad_norm": 0.7482696034746834,
612
+ "learning_rate": 4.445854306986563e-05,
613
+ "loss": 2.0851,
614
+ "step": 83
615
+ },
616
+ {
617
+ "epoch": 0.28378378378378377,
618
+ "grad_norm": 0.508289422303338,
619
+ "learning_rate": 4.428913293157293e-05,
620
+ "loss": 2.1759,
621
+ "step": 84
622
+ },
623
+ {
624
+ "epoch": 0.28716216216216217,
625
+ "grad_norm": 0.4749189097462539,
626
+ "learning_rate": 4.411754756340198e-05,
627
+ "loss": 2.0721,
628
+ "step": 85
629
+ },
630
+ {
631
+ "epoch": 0.2905405405405405,
632
+ "grad_norm": 0.493594282927666,
633
+ "learning_rate": 4.3943809196257794e-05,
634
+ "loss": 2.0351,
635
+ "step": 86
636
+ },
637
+ {
638
+ "epoch": 0.2939189189189189,
639
+ "grad_norm": 0.4836545743981663,
640
+ "learning_rate": 4.376794033999177e-05,
641
+ "loss": 2.0896,
642
+ "step": 87
643
+ },
644
+ {
645
+ "epoch": 0.2972972972972973,
646
+ "grad_norm": 0.47767898533003106,
647
+ "learning_rate": 4.358996378048524e-05,
648
+ "loss": 2.083,
649
+ "step": 88
650
+ },
651
+ {
652
+ "epoch": 0.30067567567567566,
653
+ "grad_norm": 0.4390064059005752,
654
+ "learning_rate": 4.340990257669732e-05,
655
+ "loss": 2.0627,
656
+ "step": 89
657
+ },
658
+ {
659
+ "epoch": 0.30405405405405406,
660
+ "grad_norm": 0.4601711355647231,
661
+ "learning_rate": 4.3227780057677345e-05,
662
+ "loss": 2.0997,
663
+ "step": 90
664
+ },
665
+ {
666
+ "epoch": 0.30405405405405406,
667
+ "eval_loss": 2.011120080947876,
668
+ "eval_runtime": 190.8365,
669
+ "eval_samples_per_second": 0.262,
670
+ "eval_steps_per_second": 0.068,
671
+ "step": 90
672
+ },
673
+ {
674
+ "epoch": 0.30743243243243246,
675
+ "grad_norm": 0.5654017461216198,
676
+ "learning_rate": 4.304361981954231e-05,
677
+ "loss": 2.2149,
678
+ "step": 91
679
+ },
680
+ {
681
+ "epoch": 0.3108108108108108,
682
+ "grad_norm": 0.5064873219371222,
683
+ "learning_rate": 4.285744572241972e-05,
684
+ "loss": 2.1093,
685
+ "step": 92
686
+ },
687
+ {
688
+ "epoch": 0.3141891891891892,
689
+ "grad_norm": 0.46470652155232134,
690
+ "learning_rate": 4.266928188735621e-05,
691
+ "loss": 2.1098,
692
+ "step": 93
693
+ },
694
+ {
695
+ "epoch": 0.31756756756756754,
696
+ "grad_norm": 0.4413493288478021,
697
+ "learning_rate": 4.247915269319241e-05,
698
+ "loss": 2.1431,
699
+ "step": 94
700
+ },
701
+ {
702
+ "epoch": 0.32094594594594594,
703
+ "grad_norm": 1.0020586721524896,
704
+ "learning_rate": 4.2287082773404386e-05,
705
+ "loss": 2.0877,
706
+ "step": 95
707
+ },
708
+ {
709
+ "epoch": 0.32432432432432434,
710
+ "grad_norm": 0.4848089444845991,
711
+ "learning_rate": 4.209309701291201e-05,
712
+ "loss": 2.1175,
713
+ "step": 96
714
+ },
715
+ {
716
+ "epoch": 0.3277027027027027,
717
+ "grad_norm": 0.5555159336979827,
718
+ "learning_rate": 4.189722054485492e-05,
719
+ "loss": 2.1563,
720
+ "step": 97
721
+ },
722
+ {
723
+ "epoch": 0.3310810810810811,
724
+ "grad_norm": 0.3802895433591588,
725
+ "learning_rate": 4.169947874733619e-05,
726
+ "loss": 2.0732,
727
+ "step": 98
728
+ },
729
+ {
730
+ "epoch": 0.3344594594594595,
731
+ "grad_norm": 0.7320601930371831,
732
+ "learning_rate": 4.149989724013425e-05,
733
+ "loss": 2.1452,
734
+ "step": 99
735
+ },
736
+ {
737
+ "epoch": 0.33783783783783783,
738
+ "grad_norm": 0.8602357197050848,
739
+ "learning_rate": 4.1298501881383624e-05,
740
+ "loss": 2.1766,
741
+ "step": 100
742
+ },
743
+ {
744
+ "epoch": 0.34121621621621623,
745
+ "grad_norm": 0.5831812051877154,
746
+ "learning_rate": 4.109531876422463e-05,
747
+ "loss": 2.1593,
748
+ "step": 101
749
+ },
750
+ {
751
+ "epoch": 0.34459459459459457,
752
+ "grad_norm": 0.7665489432929005,
753
+ "learning_rate": 4.089037421342277e-05,
754
+ "loss": 2.0295,
755
+ "step": 102
756
+ },
757
+ {
758
+ "epoch": 0.34797297297297297,
759
+ "grad_norm": 0.45337471468141477,
760
+ "learning_rate": 4.0683694781958e-05,
761
+ "loss": 2.1087,
762
+ "step": 103
763
+ },
764
+ {
765
+ "epoch": 0.35135135135135137,
766
+ "grad_norm": 0.4591955107711257,
767
+ "learning_rate": 4.047530724758451e-05,
768
+ "loss": 2.0354,
769
+ "step": 104
770
+ },
771
+ {
772
+ "epoch": 0.3547297297297297,
773
+ "grad_norm": 0.7505711753697653,
774
+ "learning_rate": 4.026523860936132e-05,
775
+ "loss": 2.0258,
776
+ "step": 105
777
+ },
778
+ {
779
+ "epoch": 0.3581081081081081,
780
+ "grad_norm": 0.589397231315979,
781
+ "learning_rate": 4.005351608415426e-05,
782
+ "loss": 2.0051,
783
+ "step": 106
784
+ },
785
+ {
786
+ "epoch": 0.3614864864864865,
787
+ "grad_norm": 0.6872824203092515,
788
+ "learning_rate": 3.9840167103109675e-05,
789
+ "loss": 1.9355,
790
+ "step": 107
791
+ },
792
+ {
793
+ "epoch": 0.36486486486486486,
794
+ "grad_norm": 0.45802674220232215,
795
+ "learning_rate": 3.9625219308100455e-05,
796
+ "loss": 2.0836,
797
+ "step": 108
798
+ },
799
+ {
800
+ "epoch": 0.36824324324324326,
801
+ "grad_norm": 0.5524787455898191,
802
+ "learning_rate": 3.940870054814462e-05,
803
+ "loss": 2.0474,
804
+ "step": 109
805
+ },
806
+ {
807
+ "epoch": 0.3716216216216216,
808
+ "grad_norm": 0.38416177227514725,
809
+ "learning_rate": 3.919063887579726e-05,
810
+ "loss": 2.0985,
811
+ "step": 110
812
+ },
813
+ {
814
+ "epoch": 0.375,
815
+ "grad_norm": 0.45960539321926364,
816
+ "learning_rate": 3.897106254351587e-05,
817
+ "loss": 2.0129,
818
+ "step": 111
819
+ },
820
+ {
821
+ "epoch": 0.3783783783783784,
822
+ "grad_norm": 0.37861955022931376,
823
+ "learning_rate": 3.875e-05,
824
+ "loss": 2.1427,
825
+ "step": 112
826
+ },
827
+ {
828
+ "epoch": 0.38175675675675674,
829
+ "grad_norm": 0.581523763120522,
830
+ "learning_rate": 3.852747988650539e-05,
831
+ "loss": 2.0318,
832
+ "step": 113
833
+ },
834
+ {
835
+ "epoch": 0.38513513513513514,
836
+ "grad_norm": 0.3504600135974039,
837
+ "learning_rate": 3.83035310331331e-05,
838
+ "loss": 2.033,
839
+ "step": 114
840
+ },
841
+ {
842
+ "epoch": 0.3885135135135135,
843
+ "grad_norm": 0.4242352094167052,
844
+ "learning_rate": 3.807818245509429e-05,
845
+ "loss": 2.034,
846
+ "step": 115
847
+ },
848
+ {
849
+ "epoch": 0.3918918918918919,
850
+ "grad_norm": 0.4250673616692747,
851
+ "learning_rate": 3.785146334895093e-05,
852
+ "loss": 2.1702,
853
+ "step": 116
854
+ },
855
+ {
856
+ "epoch": 0.3952702702702703,
857
+ "grad_norm": 3.2751318573643617,
858
+ "learning_rate": 3.762340308883302e-05,
859
+ "loss": 2.1026,
860
+ "step": 117
861
+ },
862
+ {
863
+ "epoch": 0.39864864864864863,
864
+ "grad_norm": 0.48584128738743915,
865
+ "learning_rate": 3.739403122263288e-05,
866
+ "loss": 2.22,
867
+ "step": 118
868
+ },
869
+ {
870
+ "epoch": 0.40202702702702703,
871
+ "grad_norm": 0.4187766943285619,
872
+ "learning_rate": 3.716337746817685e-05,
873
+ "loss": 2.1541,
874
+ "step": 119
875
+ },
876
+ {
877
+ "epoch": 0.40540540540540543,
878
+ "grad_norm": 0.5051183151449187,
879
+ "learning_rate": 3.6931471709374946e-05,
880
+ "loss": 2.1113,
881
+ "step": 120
882
+ },
883
+ {
884
+ "epoch": 0.40540540540540543,
885
+ "eval_loss": 2.009887218475342,
886
+ "eval_runtime": 193.8883,
887
+ "eval_samples_per_second": 0.258,
888
+ "eval_steps_per_second": 0.067,
889
+ "step": 120
890
+ },
891
+ {
892
+ "epoch": 0.40878378378378377,
893
+ "grad_norm": 0.40423483975901836,
894
+ "learning_rate": 3.669834399234913e-05,
895
+ "loss": 2.0209,
896
+ "step": 121
897
+ },
898
+ {
899
+ "epoch": 0.41216216216216217,
900
+ "grad_norm": 0.3825955755250103,
901
+ "learning_rate": 3.646402452154043e-05,
902
+ "loss": 2.074,
903
+ "step": 122
904
+ },
905
+ {
906
+ "epoch": 0.4155405405405405,
907
+ "grad_norm": 1.4013949742645142,
908
+ "learning_rate": 3.622854365579561e-05,
909
+ "loss": 2.1807,
910
+ "step": 123
911
+ },
912
+ {
913
+ "epoch": 0.4189189189189189,
914
+ "grad_norm": 0.43240866134882766,
915
+ "learning_rate": 3.5991931904433824e-05,
916
+ "loss": 1.9988,
917
+ "step": 124
918
+ },
919
+ {
920
+ "epoch": 0.4222972972972973,
921
+ "grad_norm": 0.4777714379483413,
922
+ "learning_rate": 3.575421992329377e-05,
923
+ "loss": 2.0801,
924
+ "step": 125
925
+ },
926
+ {
927
+ "epoch": 0.42567567567567566,
928
+ "grad_norm": 0.49357523405169307,
929
+ "learning_rate": 3.551543851076188e-05,
930
+ "loss": 2.0035,
931
+ "step": 126
932
+ },
933
+ {
934
+ "epoch": 0.42905405405405406,
935
+ "grad_norm": 0.3447821776586979,
936
+ "learning_rate": 3.5275618603782006e-05,
937
+ "loss": 2.0435,
938
+ "step": 127
939
+ },
940
+ {
941
+ "epoch": 0.43243243243243246,
942
+ "grad_norm": 0.3718901049854852,
943
+ "learning_rate": 3.503479127384719e-05,
944
+ "loss": 1.8828,
945
+ "step": 128
946
+ },
947
+ {
948
+ "epoch": 0.4358108108108108,
949
+ "grad_norm": 0.3888324394883177,
950
+ "learning_rate": 3.479298772297398e-05,
951
+ "loss": 2.1094,
952
+ "step": 129
953
+ },
954
+ {
955
+ "epoch": 0.4391891891891892,
956
+ "grad_norm": 0.5267690929558577,
957
+ "learning_rate": 3.4550239279659854e-05,
958
+ "loss": 2.1593,
959
+ "step": 130
960
+ },
961
+ {
962
+ "epoch": 0.44256756756756754,
963
+ "grad_norm": 0.4636315581971976,
964
+ "learning_rate": 3.4306577394824207e-05,
965
+ "loss": 2.1605,
966
+ "step": 131
967
+ },
968
+ {
969
+ "epoch": 0.44594594594594594,
970
+ "grad_norm": 0.3968487601273563,
971
+ "learning_rate": 3.406203363773356e-05,
972
+ "loss": 2.0023,
973
+ "step": 132
974
+ },
975
+ {
976
+ "epoch": 0.44932432432432434,
977
+ "grad_norm": 0.392460435962094,
978
+ "learning_rate": 3.381663969191137e-05,
979
+ "loss": 2.1517,
980
+ "step": 133
981
+ },
982
+ {
983
+ "epoch": 0.4527027027027027,
984
+ "grad_norm": 0.4031589419917055,
985
+ "learning_rate": 3.3570427351033046e-05,
986
+ "loss": 2.0701,
987
+ "step": 134
988
+ },
989
+ {
990
+ "epoch": 0.4560810810810811,
991
+ "grad_norm": 0.4253231691696294,
992
+ "learning_rate": 3.332342851480672e-05,
993
+ "loss": 2.0944,
994
+ "step": 135
995
+ },
996
+ {
997
+ "epoch": 0.4594594594594595,
998
+ "grad_norm": 1.089550042036897,
999
+ "learning_rate": 3.307567518484025e-05,
1000
+ "loss": 2.1879,
1001
+ "step": 136
1002
+ },
1003
+ {
1004
+ "epoch": 0.46283783783783783,
1005
+ "grad_norm": 0.5433174961880026,
1006
+ "learning_rate": 3.282719946049505e-05,
1007
+ "loss": 2.1142,
1008
+ "step": 137
1009
+ },
1010
+ {
1011
+ "epoch": 0.46621621621621623,
1012
+ "grad_norm": 0.47522024279968983,
1013
+ "learning_rate": 3.257803353472724e-05,
1014
+ "loss": 2.0765,
1015
+ "step": 138
1016
+ },
1017
+ {
1018
+ "epoch": 0.46959459459459457,
1019
+ "grad_norm": 0.6397031743657627,
1020
+ "learning_rate": 3.232820968991664e-05,
1021
+ "loss": 2.0565,
1022
+ "step": 139
1023
+ },
1024
+ {
1025
+ "epoch": 0.47297297297297297,
1026
+ "grad_norm": 0.8231847588094275,
1027
+ "learning_rate": 3.207776029368427e-05,
1028
+ "loss": 2.1382,
1029
+ "step": 140
1030
+ },
1031
+ {
1032
+ "epoch": 0.47635135135135137,
1033
+ "grad_norm": 0.4277815234715947,
1034
+ "learning_rate": 3.1826717794698635e-05,
1035
+ "loss": 2.1454,
1036
+ "step": 141
1037
+ },
1038
+ {
1039
+ "epoch": 0.4797297297297297,
1040
+ "grad_norm": 0.395176536808308,
1041
+ "learning_rate": 3.157511471847176e-05,
1042
+ "loss": 2.0293,
1043
+ "step": 142
1044
+ },
1045
+ {
1046
+ "epoch": 0.4831081081081081,
1047
+ "grad_norm": 0.42124877734068217,
1048
+ "learning_rate": 3.1322983663145e-05,
1049
+ "loss": 2.0417,
1050
+ "step": 143
1051
+ },
1052
+ {
1053
+ "epoch": 0.4864864864864865,
1054
+ "grad_norm": 0.6103856586396839,
1055
+ "learning_rate": 3.107035729526566e-05,
1056
+ "loss": 2.0703,
1057
+ "step": 144
1058
+ },
1059
+ {
1060
+ "epoch": 0.48986486486486486,
1061
+ "grad_norm": 0.40802626443551787,
1062
+ "learning_rate": 3.081726834555458e-05,
1063
+ "loss": 1.9202,
1064
+ "step": 145
1065
+ },
1066
+ {
1067
+ "epoch": 0.49324324324324326,
1068
+ "grad_norm": 0.4038507240265364,
1069
+ "learning_rate": 3.0563749604665556e-05,
1070
+ "loss": 2.1105,
1071
+ "step": 146
1072
+ },
1073
+ {
1074
+ "epoch": 0.4966216216216216,
1075
+ "grad_norm": 0.39745914058435033,
1076
+ "learning_rate": 3.0309833918936865e-05,
1077
+ "loss": 2.0854,
1078
+ "step": 147
1079
+ },
1080
+ {
1081
+ "epoch": 0.5,
1082
+ "grad_norm": 0.39094920659893395,
1083
+ "learning_rate": 3.0055554186135688e-05,
1084
+ "loss": 2.1638,
1085
+ "step": 148
1086
+ },
1087
+ {
1088
+ "epoch": 0.5033783783783784,
1089
+ "grad_norm": 0.4684851166837971,
1090
+ "learning_rate": 2.980094335119577e-05,
1091
+ "loss": 2.0368,
1092
+ "step": 149
1093
+ },
1094
+ {
1095
+ "epoch": 0.5067567567567568,
1096
+ "grad_norm": 0.8309495298034889,
1097
+ "learning_rate": 2.9546034401949064e-05,
1098
+ "loss": 2.1695,
1099
+ "step": 150
1100
+ },
1101
+ {
1102
+ "epoch": 0.5067567567567568,
1103
+ "eval_loss": 2.0075740814208984,
1104
+ "eval_runtime": 193.1213,
1105
+ "eval_samples_per_second": 0.259,
1106
+ "eval_steps_per_second": 0.067,
1107
+ "step": 150
1108
+ },
1109
+ {
1110
+ "epoch": 0.5101351351351351,
1111
+ "grad_norm": 0.5583192813687627,
1112
+ "learning_rate": 2.9290860364851702e-05,
1113
+ "loss": 2.0582,
1114
+ "step": 151
1115
+ },
1116
+ {
1117
+ "epoch": 0.5135135135135135,
1118
+ "grad_norm": 0.42473795943255627,
1119
+ "learning_rate": 2.90354543007051e-05,
1120
+ "loss": 2.0871,
1121
+ "step": 152
1122
+ },
1123
+ {
1124
+ "epoch": 0.5168918918918919,
1125
+ "grad_norm": 0.4247509513157766,
1126
+ "learning_rate": 2.877984930037251e-05,
1127
+ "loss": 2.0964,
1128
+ "step": 153
1129
+ },
1130
+ {
1131
+ "epoch": 0.5202702702702703,
1132
+ "grad_norm": 0.8778087000903096,
1133
+ "learning_rate": 2.8524078480491684e-05,
1134
+ "loss": 2.0506,
1135
+ "step": 154
1136
+ },
1137
+ {
1138
+ "epoch": 0.5236486486486487,
1139
+ "grad_norm": 0.501109409670388,
1140
+ "learning_rate": 2.826817497918428e-05,
1141
+ "loss": 2.1435,
1142
+ "step": 155
1143
+ },
1144
+ {
1145
+ "epoch": 0.527027027027027,
1146
+ "grad_norm": 0.7730432872928119,
1147
+ "learning_rate": 2.8012171951762378e-05,
1148
+ "loss": 2.0909,
1149
+ "step": 156
1150
+ },
1151
+ {
1152
+ "epoch": 0.5304054054054054,
1153
+ "grad_norm": 0.4007388361090252,
1154
+ "learning_rate": 2.7756102566432845e-05,
1155
+ "loss": 2.1613,
1156
+ "step": 157
1157
+ },
1158
+ {
1159
+ "epoch": 0.5337837837837838,
1160
+ "grad_norm": 0.4121213099878934,
1161
+ "learning_rate": 2.7500000000000004e-05,
1162
+ "loss": 2.2213,
1163
+ "step": 158
1164
+ },
1165
+ {
1166
+ "epoch": 0.5371621621621622,
1167
+ "grad_norm": 0.4237936256648311,
1168
+ "learning_rate": 2.7243897433567157e-05,
1169
+ "loss": 2.1795,
1170
+ "step": 159
1171
+ },
1172
+ {
1173
+ "epoch": 0.5405405405405406,
1174
+ "grad_norm": 0.41107097005560067,
1175
+ "learning_rate": 2.6987828048237624e-05,
1176
+ "loss": 2.0895,
1177
+ "step": 160
1178
+ },
1179
+ {
1180
+ "epoch": 0.543918918918919,
1181
+ "grad_norm": 0.4463337134292773,
1182
+ "learning_rate": 2.6731825020815725e-05,
1183
+ "loss": 2.046,
1184
+ "step": 161
1185
+ },
1186
+ {
1187
+ "epoch": 0.5472972972972973,
1188
+ "grad_norm": 0.5230967905508315,
1189
+ "learning_rate": 2.6475921519508325e-05,
1190
+ "loss": 2.0374,
1191
+ "step": 162
1192
+ },
1193
+ {
1194
+ "epoch": 0.5506756756756757,
1195
+ "grad_norm": 0.414839716539812,
1196
+ "learning_rate": 2.62201506996275e-05,
1197
+ "loss": 2.2485,
1198
+ "step": 163
1199
+ },
1200
+ {
1201
+ "epoch": 0.5540540540540541,
1202
+ "grad_norm": 0.38087462228816815,
1203
+ "learning_rate": 2.5964545699294906e-05,
1204
+ "loss": 2.0365,
1205
+ "step": 164
1206
+ },
1207
+ {
1208
+ "epoch": 0.5574324324324325,
1209
+ "grad_norm": 0.5305482547516058,
1210
+ "learning_rate": 2.570913963514831e-05,
1211
+ "loss": 2.0701,
1212
+ "step": 165
1213
+ },
1214
+ {
1215
+ "epoch": 0.5608108108108109,
1216
+ "grad_norm": 0.39988875104823635,
1217
+ "learning_rate": 2.5453965598050944e-05,
1218
+ "loss": 2.1985,
1219
+ "step": 166
1220
+ },
1221
+ {
1222
+ "epoch": 0.5641891891891891,
1223
+ "grad_norm": 0.6054380331009478,
1224
+ "learning_rate": 2.5199056648804233e-05,
1225
+ "loss": 2.1136,
1226
+ "step": 167
1227
+ },
1228
+ {
1229
+ "epoch": 0.5675675675675675,
1230
+ "grad_norm": 0.39275163056643564,
1231
+ "learning_rate": 2.4944445813864314e-05,
1232
+ "loss": 2.0735,
1233
+ "step": 168
1234
+ },
1235
+ {
1236
+ "epoch": 0.5709459459459459,
1237
+ "grad_norm": 0.7078296605563206,
1238
+ "learning_rate": 2.469016608106315e-05,
1239
+ "loss": 2.1578,
1240
+ "step": 169
1241
+ },
1242
+ {
1243
+ "epoch": 0.5743243243243243,
1244
+ "grad_norm": 0.439519908152304,
1245
+ "learning_rate": 2.443625039533446e-05,
1246
+ "loss": 2.0469,
1247
+ "step": 170
1248
+ },
1249
+ {
1250
+ "epoch": 0.5777027027027027,
1251
+ "grad_norm": 0.47171431683346926,
1252
+ "learning_rate": 2.4182731654445427e-05,
1253
+ "loss": 2.0609,
1254
+ "step": 171
1255
+ },
1256
+ {
1257
+ "epoch": 0.581081081081081,
1258
+ "grad_norm": 0.43725040423496425,
1259
+ "learning_rate": 2.3929642704734347e-05,
1260
+ "loss": 2.1686,
1261
+ "step": 172
1262
+ },
1263
+ {
1264
+ "epoch": 0.5844594594594594,
1265
+ "grad_norm": 0.5156240873689197,
1266
+ "learning_rate": 2.3677016336855002e-05,
1267
+ "loss": 2.111,
1268
+ "step": 173
1269
+ },
1270
+ {
1271
+ "epoch": 0.5878378378378378,
1272
+ "grad_norm": 0.478909789809296,
1273
+ "learning_rate": 2.3424885281528248e-05,
1274
+ "loss": 2.0993,
1275
+ "step": 174
1276
+ },
1277
+ {
1278
+ "epoch": 0.5912162162162162,
1279
+ "grad_norm": 0.8822684350527039,
1280
+ "learning_rate": 2.3173282205301367e-05,
1281
+ "loss": 2.091,
1282
+ "step": 175
1283
+ },
1284
+ {
1285
+ "epoch": 0.5945945945945946,
1286
+ "grad_norm": 0.5005747298379083,
1287
+ "learning_rate": 2.2922239706315745e-05,
1288
+ "loss": 2.0998,
1289
+ "step": 176
1290
+ },
1291
+ {
1292
+ "epoch": 0.597972972972973,
1293
+ "grad_norm": 0.38147794073978136,
1294
+ "learning_rate": 2.2671790310083364e-05,
1295
+ "loss": 2.0433,
1296
+ "step": 177
1297
+ },
1298
+ {
1299
+ "epoch": 0.6013513513513513,
1300
+ "grad_norm": 0.449696856682795,
1301
+ "learning_rate": 2.2421966465272765e-05,
1302
+ "loss": 1.9547,
1303
+ "step": 178
1304
+ },
1305
+ {
1306
+ "epoch": 0.6047297297297297,
1307
+ "grad_norm": 0.4046647546809551,
1308
+ "learning_rate": 2.217280053950495e-05,
1309
+ "loss": 2.0109,
1310
+ "step": 179
1311
+ },
1312
+ {
1313
+ "epoch": 0.6081081081081081,
1314
+ "grad_norm": 0.44319480569143777,
1315
+ "learning_rate": 2.1924324815159757e-05,
1316
+ "loss": 2.0782,
1317
+ "step": 180
1318
+ },
1319
+ {
1320
+ "epoch": 0.6081081081081081,
1321
+ "eval_loss": 2.006296157836914,
1322
+ "eval_runtime": 194.8007,
1323
+ "eval_samples_per_second": 0.257,
1324
+ "eval_steps_per_second": 0.067,
1325
+ "step": 180
1326
+ },
1327
+ {
1328
+ "epoch": 0.6114864864864865,
1329
+ "grad_norm": 0.4245370001741025,
1330
+ "learning_rate": 2.1676571485193282e-05,
1331
+ "loss": 1.9819,
1332
+ "step": 181
1333
+ },
1334
+ {
1335
+ "epoch": 0.6148648648648649,
1336
+ "grad_norm": 0.4123813369355281,
1337
+ "learning_rate": 2.1429572648966956e-05,
1338
+ "loss": 2.0597,
1339
+ "step": 182
1340
+ },
1341
+ {
1342
+ "epoch": 0.6182432432432432,
1343
+ "grad_norm": 0.4870232191555961,
1344
+ "learning_rate": 2.1183360308088636e-05,
1345
+ "loss": 2.0595,
1346
+ "step": 183
1347
+ },
1348
+ {
1349
+ "epoch": 0.6216216216216216,
1350
+ "grad_norm": 0.43367499716068364,
1351
+ "learning_rate": 2.0937966362266443e-05,
1352
+ "loss": 1.7438,
1353
+ "step": 184
1354
+ },
1355
+ {
1356
+ "epoch": 0.625,
1357
+ "grad_norm": 0.3828393006442412,
1358
+ "learning_rate": 2.06934226051758e-05,
1359
+ "loss": 2.2068,
1360
+ "step": 185
1361
+ },
1362
+ {
1363
+ "epoch": 0.6283783783783784,
1364
+ "grad_norm": 0.4948622876303367,
1365
+ "learning_rate": 2.0449760720340155e-05,
1366
+ "loss": 2.1126,
1367
+ "step": 186
1368
+ },
1369
+ {
1370
+ "epoch": 0.6317567567567568,
1371
+ "grad_norm": 0.4073583504258278,
1372
+ "learning_rate": 2.0207012277026016e-05,
1373
+ "loss": 2.0846,
1374
+ "step": 187
1375
+ },
1376
+ {
1377
+ "epoch": 0.6351351351351351,
1378
+ "grad_norm": 0.5109456209828284,
1379
+ "learning_rate": 1.9965208726152813e-05,
1380
+ "loss": 2.2111,
1381
+ "step": 188
1382
+ },
1383
+ {
1384
+ "epoch": 0.6385135135135135,
1385
+ "grad_norm": 0.6271240563609504,
1386
+ "learning_rate": 1.9724381396217996e-05,
1387
+ "loss": 2.0691,
1388
+ "step": 189
1389
+ },
1390
+ {
1391
+ "epoch": 0.6418918918918919,
1392
+ "grad_norm": 0.7995422703795263,
1393
+ "learning_rate": 1.948456148923813e-05,
1394
+ "loss": 2.0512,
1395
+ "step": 190
1396
+ },
1397
+ {
1398
+ "epoch": 0.6452702702702703,
1399
+ "grad_norm": 0.5355787419178449,
1400
+ "learning_rate": 1.9245780076706233e-05,
1401
+ "loss": 1.9599,
1402
+ "step": 191
1403
+ },
1404
+ {
1405
+ "epoch": 0.6486486486486487,
1406
+ "grad_norm": 0.37446732667446725,
1407
+ "learning_rate": 1.9008068095566178e-05,
1408
+ "loss": 1.9695,
1409
+ "step": 192
1410
+ },
1411
+ {
1412
+ "epoch": 0.652027027027027,
1413
+ "grad_norm": 0.4147478978916466,
1414
+ "learning_rate": 1.8771456344204385e-05,
1415
+ "loss": 2.1151,
1416
+ "step": 193
1417
+ },
1418
+ {
1419
+ "epoch": 0.6554054054054054,
1420
+ "grad_norm": 0.922383794900146,
1421
+ "learning_rate": 1.8535975478459566e-05,
1422
+ "loss": 2.0877,
1423
+ "step": 194
1424
+ },
1425
+ {
1426
+ "epoch": 0.6587837837837838,
1427
+ "grad_norm": 0.5037479123782382,
1428
+ "learning_rate": 1.830165600765087e-05,
1429
+ "loss": 2.0584,
1430
+ "step": 195
1431
+ },
1432
+ {
1433
+ "epoch": 0.6621621621621622,
1434
+ "grad_norm": 0.4337707246605357,
1435
+ "learning_rate": 1.806852829062507e-05,
1436
+ "loss": 2.1358,
1437
+ "step": 196
1438
+ },
1439
+ {
1440
+ "epoch": 0.6655405405405406,
1441
+ "grad_norm": 1.0443488522366138,
1442
+ "learning_rate": 1.783662253182316e-05,
1443
+ "loss": 2.0686,
1444
+ "step": 197
1445
+ },
1446
+ {
1447
+ "epoch": 0.668918918918919,
1448
+ "grad_norm": 0.3652644321832928,
1449
+ "learning_rate": 1.7605968777367116e-05,
1450
+ "loss": 2.1038,
1451
+ "step": 198
1452
+ },
1453
+ {
1454
+ "epoch": 0.6722972972972973,
1455
+ "grad_norm": 0.44849286894487655,
1456
+ "learning_rate": 1.7376596911166987e-05,
1457
+ "loss": 2.2002,
1458
+ "step": 199
1459
+ },
1460
+ {
1461
+ "epoch": 0.6756756756756757,
1462
+ "grad_norm": 0.6883412198217931,
1463
+ "learning_rate": 1.7148536651049078e-05,
1464
+ "loss": 2.1097,
1465
+ "step": 200
1466
+ },
1467
+ {
1468
+ "epoch": 0.6790540540540541,
1469
+ "grad_norm": 0.38108344540028705,
1470
+ "learning_rate": 1.692181754490571e-05,
1471
+ "loss": 2.1487,
1472
+ "step": 201
1473
+ },
1474
+ {
1475
+ "epoch": 0.6824324324324325,
1476
+ "grad_norm": 0.46596636892914783,
1477
+ "learning_rate": 1.66964689668669e-05,
1478
+ "loss": 2.1226,
1479
+ "step": 202
1480
+ },
1481
+ {
1482
+ "epoch": 0.6858108108108109,
1483
+ "grad_norm": 0.3884889567792045,
1484
+ "learning_rate": 1.6472520113494622e-05,
1485
+ "loss": 2.0384,
1486
+ "step": 203
1487
+ },
1488
+ {
1489
+ "epoch": 0.6891891891891891,
1490
+ "grad_norm": 0.5294696992679853,
1491
+ "learning_rate": 1.6250000000000005e-05,
1492
+ "loss": 2.0854,
1493
+ "step": 204
1494
+ },
1495
+ {
1496
+ "epoch": 0.6925675675675675,
1497
+ "grad_norm": 0.6679912280514742,
1498
+ "learning_rate": 1.6028937456484137e-05,
1499
+ "loss": 2.1521,
1500
+ "step": 205
1501
+ },
1502
+ {
1503
+ "epoch": 0.6959459459459459,
1504
+ "grad_norm": 1.1501328678855647,
1505
+ "learning_rate": 1.580936112420275e-05,
1506
+ "loss": 1.9754,
1507
+ "step": 206
1508
+ },
1509
+ {
1510
+ "epoch": 0.6993243243243243,
1511
+ "grad_norm": 0.4599912704355663,
1512
+ "learning_rate": 1.559129945185538e-05,
1513
+ "loss": 2.0103,
1514
+ "step": 207
1515
+ },
1516
+ {
1517
+ "epoch": 0.7027027027027027,
1518
+ "grad_norm": 0.4723451173074553,
1519
+ "learning_rate": 1.5374780691899553e-05,
1520
+ "loss": 2.0294,
1521
+ "step": 208
1522
+ },
1523
+ {
1524
+ "epoch": 0.706081081081081,
1525
+ "grad_norm": 0.39614835888065925,
1526
+ "learning_rate": 1.5159832896890324e-05,
1527
+ "loss": 2.0027,
1528
+ "step": 209
1529
+ },
1530
+ {
1531
+ "epoch": 0.7094594594594594,
1532
+ "grad_norm": 0.5674089763099159,
1533
+ "learning_rate": 1.4946483915845752e-05,
1534
+ "loss": 2.0972,
1535
+ "step": 210
1536
+ },
1537
+ {
1538
+ "epoch": 0.7094594594594594,
1539
+ "eval_loss": 2.005359411239624,
1540
+ "eval_runtime": 196.3936,
1541
+ "eval_samples_per_second": 0.255,
1542
+ "eval_steps_per_second": 0.066,
1543
+ "step": 210
1544
+ },
1545
+ {
1546
+ "epoch": 0.7128378378378378,
1547
+ "grad_norm": 0.405311292588835,
1548
+ "learning_rate": 1.473476139063869e-05,
1549
+ "loss": 2.1081,
1550
+ "step": 211
1551
+ },
1552
+ {
1553
+ "epoch": 0.7162162162162162,
1554
+ "grad_norm": 0.49941841218777355,
1555
+ "learning_rate": 1.4524692752415493e-05,
1556
+ "loss": 1.992,
1557
+ "step": 212
1558
+ },
1559
+ {
1560
+ "epoch": 0.7195945945945946,
1561
+ "grad_norm": 0.3870145887647159,
1562
+ "learning_rate": 1.4316305218041997e-05,
1563
+ "loss": 2.0732,
1564
+ "step": 213
1565
+ },
1566
+ {
1567
+ "epoch": 0.722972972972973,
1568
+ "grad_norm": 0.8010230321806846,
1569
+ "learning_rate": 1.4109625786577236e-05,
1570
+ "loss": 2.031,
1571
+ "step": 214
1572
+ },
1573
+ {
1574
+ "epoch": 0.7263513513513513,
1575
+ "grad_norm": 0.41451504848593906,
1576
+ "learning_rate": 1.3904681235775374e-05,
1577
+ "loss": 1.9604,
1578
+ "step": 215
1579
+ },
1580
+ {
1581
+ "epoch": 0.7297297297297297,
1582
+ "grad_norm": 0.42012094253734433,
1583
+ "learning_rate": 1.370149811861638e-05,
1584
+ "loss": 2.0378,
1585
+ "step": 216
1586
+ },
1587
+ {
1588
+ "epoch": 0.7331081081081081,
1589
+ "grad_norm": 0.5698583105554919,
1590
+ "learning_rate": 1.3500102759865758e-05,
1591
+ "loss": 2.1111,
1592
+ "step": 217
1593
+ },
1594
+ {
1595
+ "epoch": 0.7364864864864865,
1596
+ "grad_norm": 0.3926750948896524,
1597
+ "learning_rate": 1.330052125266382e-05,
1598
+ "loss": 2.1808,
1599
+ "step": 218
1600
+ },
1601
+ {
1602
+ "epoch": 0.7398648648648649,
1603
+ "grad_norm": 0.436664706138193,
1604
+ "learning_rate": 1.310277945514508e-05,
1605
+ "loss": 2.0413,
1606
+ "step": 219
1607
+ },
1608
+ {
1609
+ "epoch": 0.7432432432432432,
1610
+ "grad_norm": 0.5181403672040665,
1611
+ "learning_rate": 1.2906902987087994e-05,
1612
+ "loss": 2.0807,
1613
+ "step": 220
1614
+ },
1615
+ {
1616
+ "epoch": 0.7466216216216216,
1617
+ "grad_norm": 0.400974423390128,
1618
+ "learning_rate": 1.2712917226595616e-05,
1619
+ "loss": 2.0943,
1620
+ "step": 221
1621
+ },
1622
+ {
1623
+ "epoch": 0.75,
1624
+ "grad_norm": 0.4460134300706243,
1625
+ "learning_rate": 1.2520847306807589e-05,
1626
+ "loss": 2.0802,
1627
+ "step": 222
1628
+ },
1629
+ {
1630
+ "epoch": 0.7533783783783784,
1631
+ "grad_norm": 0.4131195235199069,
1632
+ "learning_rate": 1.2330718112643792e-05,
1633
+ "loss": 2.0257,
1634
+ "step": 223
1635
+ },
1636
+ {
1637
+ "epoch": 0.7567567567567568,
1638
+ "grad_norm": 0.6039834322797323,
1639
+ "learning_rate": 1.2142554277580288e-05,
1640
+ "loss": 2.1739,
1641
+ "step": 224
1642
+ },
1643
+ {
1644
+ "epoch": 0.7601351351351351,
1645
+ "grad_norm": 0.4403554972296534,
1646
+ "learning_rate": 1.1956380180457688e-05,
1647
+ "loss": 1.929,
1648
+ "step": 225
1649
+ },
1650
+ {
1651
+ "epoch": 0.7635135135135135,
1652
+ "grad_norm": 0.6136709559845319,
1653
+ "learning_rate": 1.1772219942322659e-05,
1654
+ "loss": 2.0956,
1655
+ "step": 226
1656
+ },
1657
+ {
1658
+ "epoch": 0.7668918918918919,
1659
+ "grad_norm": 0.3721043934343538,
1660
+ "learning_rate": 1.1590097423302684e-05,
1661
+ "loss": 2.0624,
1662
+ "step": 227
1663
+ },
1664
+ {
1665
+ "epoch": 0.7702702702702703,
1666
+ "grad_norm": 0.3751617145534424,
1667
+ "learning_rate": 1.1410036219514762e-05,
1668
+ "loss": 2.1306,
1669
+ "step": 228
1670
+ },
1671
+ {
1672
+ "epoch": 0.7736486486486487,
1673
+ "grad_norm": 0.4615904753215304,
1674
+ "learning_rate": 1.1232059660008237e-05,
1675
+ "loss": 2.1549,
1676
+ "step": 229
1677
+ },
1678
+ {
1679
+ "epoch": 0.777027027027027,
1680
+ "grad_norm": 0.34886057454784225,
1681
+ "learning_rate": 1.1056190803742208e-05,
1682
+ "loss": 1.8962,
1683
+ "step": 230
1684
+ },
1685
+ {
1686
+ "epoch": 0.7804054054054054,
1687
+ "grad_norm": 0.379971430732989,
1688
+ "learning_rate": 1.088245243659803e-05,
1689
+ "loss": 2.1084,
1690
+ "step": 231
1691
+ },
1692
+ {
1693
+ "epoch": 0.7837837837837838,
1694
+ "grad_norm": 0.4076749411088033,
1695
+ "learning_rate": 1.0710867068427078e-05,
1696
+ "loss": 2.0582,
1697
+ "step": 232
1698
+ },
1699
+ {
1700
+ "epoch": 0.7871621621621622,
1701
+ "grad_norm": 0.37680297146772307,
1702
+ "learning_rate": 1.0541456930134383e-05,
1703
+ "loss": 2.1541,
1704
+ "step": 233
1705
+ },
1706
+ {
1707
+ "epoch": 0.7905405405405406,
1708
+ "grad_norm": 0.3986805252065202,
1709
+ "learning_rate": 1.0374243970798297e-05,
1710
+ "loss": 2.0239,
1711
+ "step": 234
1712
+ },
1713
+ {
1714
+ "epoch": 0.793918918918919,
1715
+ "grad_norm": 0.4216381351000177,
1716
+ "learning_rate": 1.0209249854826793e-05,
1717
+ "loss": 1.9384,
1718
+ "step": 235
1719
+ },
1720
+ {
1721
+ "epoch": 0.7972972972972973,
1722
+ "grad_norm": 3.4841982335621053,
1723
+ "learning_rate": 1.0046495959150554e-05,
1724
+ "loss": 2.1648,
1725
+ "step": 236
1726
+ },
1727
+ {
1728
+ "epoch": 0.8006756756756757,
1729
+ "grad_norm": 0.550886438560183,
1730
+ "learning_rate": 9.88600337045333e-06,
1731
+ "loss": 2.0643,
1732
+ "step": 237
1733
+ },
1734
+ {
1735
+ "epoch": 0.8040540540540541,
1736
+ "grad_norm": 0.5312105646194669,
1737
+ "learning_rate": 9.727792882439938e-06,
1738
+ "loss": 2.1149,
1739
+ "step": 238
1740
+ },
1741
+ {
1742
+ "epoch": 0.8074324324324325,
1743
+ "grad_norm": 1.2275389743439304,
1744
+ "learning_rate": 9.57188499314215e-06,
1745
+ "loss": 2.2107,
1746
+ "step": 239
1747
+ },
1748
+ {
1749
+ "epoch": 0.8108108108108109,
1750
+ "grad_norm": 0.755407956454159,
1751
+ "learning_rate": 9.41829990226299e-06,
1752
+ "loss": 2.1761,
1753
+ "step": 240
1754
+ },
1755
+ {
1756
+ "epoch": 0.8108108108108109,
1757
+ "eval_loss": 2.0042636394500732,
1758
+ "eval_runtime": 195.0896,
1759
+ "eval_samples_per_second": 0.256,
1760
+ "eval_steps_per_second": 0.067,
1761
+ "step": 240
1762
+ },
1763
+ {
1764
+ "epoch": 0.8141891891891891,
1765
+ "grad_norm": 0.48379829157730286,
1766
+ "learning_rate": 9.267057508559592e-06,
1767
+ "loss": 2.101,
1768
+ "step": 241
1769
+ },
1770
+ {
1771
+ "epoch": 0.8175675675675675,
1772
+ "grad_norm": 0.44013024339715,
1773
+ "learning_rate": 9.118177407265056e-06,
1774
+ "loss": 2.1196,
1775
+ "step": 242
1776
+ },
1777
+ {
1778
+ "epoch": 0.8209459459459459,
1779
+ "grad_norm": 0.561381768462023,
1780
+ "learning_rate": 8.971678887549712e-06,
1781
+ "loss": 2.149,
1782
+ "step": 243
1783
+ },
1784
+ {
1785
+ "epoch": 0.8243243243243243,
1786
+ "grad_norm": 0.37732815129251784,
1787
+ "learning_rate": 8.827580930021936e-06,
1788
+ "loss": 2.1098,
1789
+ "step": 244
1790
+ },
1791
+ {
1792
+ "epoch": 0.8277027027027027,
1793
+ "grad_norm": 0.6499115709600214,
1794
+ "learning_rate": 8.685902204269012e-06,
1795
+ "loss": 1.9987,
1796
+ "step": 245
1797
+ },
1798
+ {
1799
+ "epoch": 0.831081081081081,
1800
+ "grad_norm": 0.3777685916732647,
1801
+ "learning_rate": 8.546661066438243e-06,
1802
+ "loss": 2.1232,
1803
+ "step": 246
1804
+ },
1805
+ {
1806
+ "epoch": 0.8344594594594594,
1807
+ "grad_norm": 0.997691102079538,
1808
+ "learning_rate": 8.409875556858728e-06,
1809
+ "loss": 2.2468,
1810
+ "step": 247
1811
+ },
1812
+ {
1813
+ "epoch": 0.8378378378378378,
1814
+ "grad_norm": 1.0313423837079596,
1815
+ "learning_rate": 8.275563397704008e-06,
1816
+ "loss": 2.0612,
1817
+ "step": 248
1818
+ },
1819
+ {
1820
+ "epoch": 0.8412162162162162,
1821
+ "grad_norm": 0.9545397247064048,
1822
+ "learning_rate": 8.143741990695947e-06,
1823
+ "loss": 2.0295,
1824
+ "step": 249
1825
+ },
1826
+ {
1827
+ "epoch": 0.8445945945945946,
1828
+ "grad_norm": 0.48112662217454943,
1829
+ "learning_rate": 8.01442841485013e-06,
1830
+ "loss": 2.016,
1831
+ "step": 250
1832
+ },
1833
+ {
1834
+ "epoch": 0.847972972972973,
1835
+ "grad_norm": 0.4525753292819526,
1836
+ "learning_rate": 7.887639424263095e-06,
1837
+ "loss": 2.1112,
1838
+ "step": 251
1839
+ },
1840
+ {
1841
+ "epoch": 0.8513513513513513,
1842
+ "grad_norm": 0.373269871593188,
1843
+ "learning_rate": 7.76339144594163e-06,
1844
+ "loss": 2.1332,
1845
+ "step": 252
1846
+ },
1847
+ {
1848
+ "epoch": 0.8547297297297297,
1849
+ "grad_norm": 0.4714615102710501,
1850
+ "learning_rate": 7.64170057767445e-06,
1851
+ "loss": 2.1127,
1852
+ "step": 253
1853
+ },
1854
+ {
1855
+ "epoch": 0.8581081081081081,
1856
+ "grad_norm": 0.41117656642398737,
1857
+ "learning_rate": 7.522582585946558e-06,
1858
+ "loss": 2.0966,
1859
+ "step": 254
1860
+ },
1861
+ {
1862
+ "epoch": 0.8614864864864865,
1863
+ "grad_norm": 0.39133852746779035,
1864
+ "learning_rate": 7.406052903896504e-06,
1865
+ "loss": 2.1377,
1866
+ "step": 255
1867
+ },
1868
+ {
1869
+ "epoch": 0.8648648648648649,
1870
+ "grad_norm": 0.4976521052133734,
1871
+ "learning_rate": 7.292126629316841e-06,
1872
+ "loss": 2.1264,
1873
+ "step": 256
1874
+ },
1875
+ {
1876
+ "epoch": 0.8682432432432432,
1877
+ "grad_norm": 0.5748609387660506,
1878
+ "learning_rate": 7.1808185226980144e-06,
1879
+ "loss": 2.078,
1880
+ "step": 257
1881
+ },
1882
+ {
1883
+ "epoch": 0.8716216216216216,
1884
+ "grad_norm": 0.6237308439362074,
1885
+ "learning_rate": 7.072143005315997e-06,
1886
+ "loss": 2.1125,
1887
+ "step": 258
1888
+ },
1889
+ {
1890
+ "epoch": 0.875,
1891
+ "grad_norm": 0.45517735653366964,
1892
+ "learning_rate": 6.966114157363821e-06,
1893
+ "loss": 2.1685,
1894
+ "step": 259
1895
+ },
1896
+ {
1897
+ "epoch": 0.8783783783783784,
1898
+ "grad_norm": 0.37602443499611526,
1899
+ "learning_rate": 6.862745716127312e-06,
1900
+ "loss": 2.1349,
1901
+ "step": 260
1902
+ },
1903
+ {
1904
+ "epoch": 0.8817567567567568,
1905
+ "grad_norm": 0.43834187328579305,
1906
+ "learning_rate": 6.762051074205289e-06,
1907
+ "loss": 2.0764,
1908
+ "step": 261
1909
+ },
1910
+ {
1911
+ "epoch": 0.8851351351351351,
1912
+ "grad_norm": 0.4170412679000652,
1913
+ "learning_rate": 6.6640432777743815e-06,
1914
+ "loss": 2.0925,
1915
+ "step": 262
1916
+ },
1917
+ {
1918
+ "epoch": 0.8885135135135135,
1919
+ "grad_norm": 0.410513816061216,
1920
+ "learning_rate": 6.568735024898755e-06,
1921
+ "loss": 2.103,
1922
+ "step": 263
1923
+ },
1924
+ {
1925
+ "epoch": 0.8918918918918919,
1926
+ "grad_norm": 0.3898098438793997,
1927
+ "learning_rate": 6.476138663884902e-06,
1928
+ "loss": 2.1138,
1929
+ "step": 264
1930
+ },
1931
+ {
1932
+ "epoch": 0.8952702702702703,
1933
+ "grad_norm": 0.3975585157411543,
1934
+ "learning_rate": 6.386266191681797e-06,
1935
+ "loss": 2.0935,
1936
+ "step": 265
1937
+ },
1938
+ {
1939
+ "epoch": 0.8986486486486487,
1940
+ "grad_norm": 0.35048570379733146,
1941
+ "learning_rate": 6.299129252326541e-06,
1942
+ "loss": 2.0116,
1943
+ "step": 266
1944
+ },
1945
+ {
1946
+ "epoch": 0.902027027027027,
1947
+ "grad_norm": 0.3919603572459853,
1948
+ "learning_rate": 6.214739135435742e-06,
1949
+ "loss": 2.0657,
1950
+ "step": 267
1951
+ },
1952
+ {
1953
+ "epoch": 0.9054054054054054,
1954
+ "grad_norm": 0.557862525874976,
1955
+ "learning_rate": 6.133106774742819e-06,
1956
+ "loss": 2.0765,
1957
+ "step": 268
1958
+ },
1959
+ {
1960
+ "epoch": 0.9087837837837838,
1961
+ "grad_norm": 0.39493324357545007,
1962
+ "learning_rate": 6.054242746681382e-06,
1963
+ "loss": 2.1249,
1964
+ "step": 269
1965
+ },
1966
+ {
1967
+ "epoch": 0.9121621621621622,
1968
+ "grad_norm": 1.9963252009359573,
1969
+ "learning_rate": 5.9781572690149684e-06,
1970
+ "loss": 2.1288,
1971
+ "step": 270
1972
+ },
1973
+ {
1974
+ "epoch": 0.9121621621621622,
1975
+ "eval_loss": 2.0036399364471436,
1976
+ "eval_runtime": 195.7956,
1977
+ "eval_samples_per_second": 0.255,
1978
+ "eval_steps_per_second": 0.066,
1979
+ "step": 270
1980
+ },
1981
+ {
1982
+ "epoch": 0.9155405405405406,
1983
+ "grad_norm": 0.5120749568149566,
1984
+ "learning_rate": 5.904860199513184e-06,
1985
+ "loss": 2.0928,
1986
+ "step": 271
1987
+ },
1988
+ {
1989
+ "epoch": 0.918918918918919,
1990
+ "grad_norm": 0.43131777610423944,
1991
+ "learning_rate": 5.834361034674521e-06,
1992
+ "loss": 2.0637,
1993
+ "step": 272
1994
+ },
1995
+ {
1996
+ "epoch": 0.9222972972972973,
1997
+ "grad_norm": 0.35373523391766476,
1998
+ "learning_rate": 5.766668908495966e-06,
1999
+ "loss": 2.0978,
2000
+ "step": 273
2001
+ },
2002
+ {
2003
+ "epoch": 0.9256756756756757,
2004
+ "grad_norm": 0.5253182101700391,
2005
+ "learning_rate": 5.701792591289609e-06,
2006
+ "loss": 1.9415,
2007
+ "step": 274
2008
+ },
2009
+ {
2010
+ "epoch": 0.9290540540540541,
2011
+ "grad_norm": 0.37847718648888473,
2012
+ "learning_rate": 5.6397404885463175e-06,
2013
+ "loss": 2.0668,
2014
+ "step": 275
2015
+ },
2016
+ {
2017
+ "epoch": 0.9324324324324325,
2018
+ "grad_norm": 0.40314006462162916,
2019
+ "learning_rate": 5.580520639846723e-06,
2020
+ "loss": 2.1415,
2021
+ "step": 276
2022
+ },
2023
+ {
2024
+ "epoch": 0.9358108108108109,
2025
+ "grad_norm": 0.7112783095355424,
2026
+ "learning_rate": 5.524140717819588e-06,
2027
+ "loss": 2.0203,
2028
+ "step": 277
2029
+ },
2030
+ {
2031
+ "epoch": 0.9391891891891891,
2032
+ "grad_norm": 0.3708045804577933,
2033
+ "learning_rate": 5.470608027147735e-06,
2034
+ "loss": 2.0389,
2035
+ "step": 278
2036
+ },
2037
+ {
2038
+ "epoch": 0.9425675675675675,
2039
+ "grad_norm": 0.41978840812377416,
2040
+ "learning_rate": 5.4199295036216396e-06,
2041
+ "loss": 2.058,
2042
+ "step": 279
2043
+ },
2044
+ {
2045
+ "epoch": 0.9459459459459459,
2046
+ "grad_norm": 0.36678087910383106,
2047
+ "learning_rate": 5.372111713240805e-06,
2048
+ "loss": 2.0516,
2049
+ "step": 280
2050
+ },
2051
+ {
2052
+ "epoch": 0.9493243243243243,
2053
+ "grad_norm": 0.3872031527878056,
2054
+ "learning_rate": 5.3271608513630705e-06,
2055
+ "loss": 2.0408,
2056
+ "step": 281
2057
+ },
2058
+ {
2059
+ "epoch": 0.9527027027027027,
2060
+ "grad_norm": 0.34292484653055205,
2061
+ "learning_rate": 5.285082741901934e-06,
2062
+ "loss": 2.1431,
2063
+ "step": 282
2064
+ },
2065
+ {
2066
+ "epoch": 0.956081081081081,
2067
+ "grad_norm": 0.3956805273525828,
2068
+ "learning_rate": 5.245882836571982e-06,
2069
+ "loss": 2.0295,
2070
+ "step": 283
2071
+ },
2072
+ {
2073
+ "epoch": 0.9594594594594594,
2074
+ "grad_norm": 0.4535838267215395,
2075
+ "learning_rate": 5.209566214182558e-06,
2076
+ "loss": 2.0857,
2077
+ "step": 284
2078
+ },
2079
+ {
2080
+ "epoch": 0.9628378378378378,
2081
+ "grad_norm": 0.3550925640606362,
2082
+ "learning_rate": 5.176137579979761e-06,
2083
+ "loss": 2.1073,
2084
+ "step": 285
2085
+ },
2086
+ {
2087
+ "epoch": 0.9662162162162162,
2088
+ "grad_norm": 0.4137692684011193,
2089
+ "learning_rate": 5.1456012650368e-06,
2090
+ "loss": 2.0959,
2091
+ "step": 286
2092
+ },
2093
+ {
2094
+ "epoch": 0.9695945945945946,
2095
+ "grad_norm": 0.428088826724393,
2096
+ "learning_rate": 5.117961225692866e-06,
2097
+ "loss": 2.0772,
2098
+ "step": 287
2099
+ },
2100
+ {
2101
+ "epoch": 0.972972972972973,
2102
+ "grad_norm": 0.44380038516311177,
2103
+ "learning_rate": 5.093221043040547e-06,
2104
+ "loss": 2.1148,
2105
+ "step": 288
2106
+ },
2107
+ {
2108
+ "epoch": 0.9763513513513513,
2109
+ "grad_norm": 0.4304760622149439,
2110
+ "learning_rate": 5.071383922461841e-06,
2111
+ "loss": 2.1174,
2112
+ "step": 289
2113
+ },
2114
+ {
2115
+ "epoch": 0.9797297297297297,
2116
+ "grad_norm": 0.3887153913842021,
2117
+ "learning_rate": 5.052452693212867e-06,
2118
+ "loss": 2.1782,
2119
+ "step": 290
2120
+ },
2121
+ {
2122
+ "epoch": 0.9831081081081081,
2123
+ "grad_norm": 0.4408096502071823,
2124
+ "learning_rate": 5.036429808057314e-06,
2125
+ "loss": 1.9739,
2126
+ "step": 291
2127
+ },
2128
+ {
2129
+ "epoch": 0.9864864864864865,
2130
+ "grad_norm": 0.38739812414286,
2131
+ "learning_rate": 5.023317342948631e-06,
2132
+ "loss": 2.0595,
2133
+ "step": 292
2134
+ },
2135
+ {
2136
+ "epoch": 0.9898648648648649,
2137
+ "grad_norm": 0.40388722876679783,
2138
+ "learning_rate": 5.013116996761085e-06,
2139
+ "loss": 1.9943,
2140
+ "step": 293
2141
+ },
2142
+ {
2143
+ "epoch": 0.9932432432432432,
2144
+ "grad_norm": 1.380480700103222,
2145
+ "learning_rate": 5.005830091069644e-06,
2146
+ "loss": 2.1601,
2147
+ "step": 294
2148
+ },
2149
+ {
2150
+ "epoch": 0.9966216216216216,
2151
+ "grad_norm": 0.5043028943315486,
2152
+ "learning_rate": 5.001457569978752e-06,
2153
+ "loss": 2.1212,
2154
+ "step": 295
2155
+ },
2156
+ {
2157
+ "epoch": 1.0,
2158
+ "grad_norm": 0.41095001521536584,
2159
+ "learning_rate": 5e-06,
2160
+ "loss": 2.1448,
2161
+ "step": 296
2162
+ }
2163
+ ],
2164
+ "logging_steps": 1,
2165
+ "max_steps": 296,
2166
+ "num_input_tokens_seen": 0,
2167
+ "num_train_epochs": 1,
2168
+ "save_steps": 60,
2169
+ "stateful_callbacks": {
2170
+ "TrainerControl": {
2171
+ "args": {
2172
+ "should_epoch_stop": false,
2173
+ "should_evaluate": false,
2174
+ "should_log": false,
2175
+ "should_save": true,
2176
+ "should_training_stop": true
2177
+ },
2178
+ "attributes": {}
2179
+ }
2180
+ },
2181
+ "total_flos": 507967929581568.0,
2182
+ "train_batch_size": 1,
2183
+ "trial_name": null,
2184
+ "trial_params": null
2185
+ }
checkpoint-296/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f751e98c8537f36dd5103f084d3b16fe579ab9d618ac216bfedc4e2f22ecfad6
3
+ size 11640
checkpoint-296/zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)