Training in progress, step 296, checkpoint
Browse files- checkpoint-296/README.md +202 -0
- checkpoint-296/adapter_config.json +37 -0
- checkpoint-296/adapter_model.safetensors +3 -0
- checkpoint-296/global_step296/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-296/global_step296/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-296/global_step296/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-296/global_step296/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-296/global_step296/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- checkpoint-296/global_step296/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- checkpoint-296/global_step296/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- checkpoint-296/global_step296/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- checkpoint-296/latest +1 -0
- checkpoint-296/rng_state_0.pth +3 -0
- checkpoint-296/rng_state_1.pth +3 -0
- checkpoint-296/rng_state_2.pth +3 -0
- checkpoint-296/rng_state_3.pth +3 -0
- checkpoint-296/scheduler.pt +3 -0
- checkpoint-296/special_tokens_map.json +30 -0
- checkpoint-296/tokenizer.json +0 -0
- checkpoint-296/tokenizer.model +3 -0
- checkpoint-296/tokenizer_config.json +0 -0
- checkpoint-296/trainer_state.json +2185 -0
- checkpoint-296/training_args.bin +3 -0
- checkpoint-296/zero_to_fp32.py +760 -0
checkpoint-296/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: unsloth/Mistral-Small-Instruct-2409
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
checkpoint-296/adapter_config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "unsloth/Mistral-Small-Instruct-2409",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": null,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 64,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.25,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": null,
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 32,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": [
|
26 |
+
"gate_proj",
|
27 |
+
"up_proj",
|
28 |
+
"q_proj",
|
29 |
+
"k_proj",
|
30 |
+
"down_proj",
|
31 |
+
"v_proj",
|
32 |
+
"o_proj"
|
33 |
+
],
|
34 |
+
"task_type": "CAUSAL_LM",
|
35 |
+
"use_dora": false,
|
36 |
+
"use_rslora": false
|
37 |
+
}
|
checkpoint-296/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:052d9fedaf0fa6a741029ff6a0685fb89390397bc3cc317b1ef6c135bb628718
|
3 |
+
size 381788248
|
checkpoint-296/global_step296/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb98fc1364da3c1c33f20462b187b0cd2ef40cbdd068cb60d176e1ad6f2df7f5
|
3 |
+
size 337530064
|
checkpoint-296/global_step296/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1394758f4f02ce1a761b558e0edd1d1331ed7b938055de65bab53e77ed8d218
|
3 |
+
size 337530064
|
checkpoint-296/global_step296/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a79abebd6461818d4090d4b1416c9a3f878374fd5b1aee5b3f5f8a9cef94ad9b
|
3 |
+
size 337530064
|
checkpoint-296/global_step296/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16d798065d5444afd41c03aea0c44d6da60c0dd912d4bab36c312ea5a60d7882
|
3 |
+
size 337530064
|
checkpoint-296/global_step296/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcf4b62edd46f064c027c7d8381013a57c737503839803ee4fa0b8536c3b5704
|
3 |
+
size 348711702
|
checkpoint-296/global_step296/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40540f91660eb8675322d9d2c2541786e760c19744ad225bfca1140706026d99
|
3 |
+
size 348711702
|
checkpoint-296/global_step296/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92fb36f9f7b2451001d4180de258372f464d89ca9285da9720da3edc60dd0228
|
3 |
+
size 348711702
|
checkpoint-296/global_step296/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f92a657666174e5b9aface7200c3aca7a2c02d4f343b7f3bc0127a8996c58d6f
|
3 |
+
size 348711702
|
checkpoint-296/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step296
|
checkpoint-296/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:029651baaee62ba13d0fefefdd856356c4b1d62bd431e2f912bc801aaceffa2d
|
3 |
+
size 14960
|
checkpoint-296/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d2e11a8f992ade71a4a3f9278a11ad46f52c38226dd6bccd059f4cec511de2f
|
3 |
+
size 14960
|
checkpoint-296/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cacbfa33ee9e24f3a00ba0a3bd02d2abfeb4b0db4756080f14e6e7d34f1aa3a
|
3 |
+
size 14960
|
checkpoint-296/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d365ab3c8428ab021faf6545a150416f07211c3ea57155495abdd155bdc72a99
|
3 |
+
size 14960
|
checkpoint-296/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5730af9c278a41d02afecd2348635d0a61707085122dd2733b7e78eddf91c693
|
3 |
+
size 1064
|
checkpoint-296/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[control_748]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
checkpoint-296/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-296/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59f95e28944c062244741268596badc900df86c7f5ded05088d2da22a7379e06
|
3 |
+
size 587583
|
checkpoint-296/tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
checkpoint-296/trainer_state.json
ADDED
@@ -0,0 +1,2185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 30,
|
6 |
+
"global_step": 296,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0033783783783783786,
|
13 |
+
"grad_norm": 1.4937225174709319,
|
14 |
+
"learning_rate": 2.5e-06,
|
15 |
+
"loss": 2.1185,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.0033783783783783786,
|
20 |
+
"eval_loss": 2.0952866077423096,
|
21 |
+
"eval_runtime": 187.5733,
|
22 |
+
"eval_samples_per_second": 0.267,
|
23 |
+
"eval_steps_per_second": 0.069,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.006756756756756757,
|
28 |
+
"grad_norm": 1.442277502174201,
|
29 |
+
"learning_rate": 5e-06,
|
30 |
+
"loss": 2.1679,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.010135135135135136,
|
35 |
+
"grad_norm": 1.4361264107689526,
|
36 |
+
"learning_rate": 7.5e-06,
|
37 |
+
"loss": 2.1475,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.013513513513513514,
|
42 |
+
"grad_norm": 1.5925067561400204,
|
43 |
+
"learning_rate": 1e-05,
|
44 |
+
"loss": 2.1111,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.016891891891891893,
|
49 |
+
"grad_norm": 1.5729343116389016,
|
50 |
+
"learning_rate": 1.25e-05,
|
51 |
+
"loss": 2.1772,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.02027027027027027,
|
56 |
+
"grad_norm": 0.77386625695677,
|
57 |
+
"learning_rate": 1.5e-05,
|
58 |
+
"loss": 2.1445,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.02364864864864865,
|
63 |
+
"grad_norm": 0.9687092422157498,
|
64 |
+
"learning_rate": 1.75e-05,
|
65 |
+
"loss": 2.0929,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.02702702702702703,
|
70 |
+
"grad_norm": 0.5745308246234537,
|
71 |
+
"learning_rate": 2e-05,
|
72 |
+
"loss": 2.1085,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.030405405405405407,
|
77 |
+
"grad_norm": 0.7880273258575979,
|
78 |
+
"learning_rate": 2.25e-05,
|
79 |
+
"loss": 2.1717,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.033783783783783786,
|
84 |
+
"grad_norm": 0.5987395071382063,
|
85 |
+
"learning_rate": 2.5e-05,
|
86 |
+
"loss": 2.074,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.037162162162162164,
|
91 |
+
"grad_norm": 0.8312307017045393,
|
92 |
+
"learning_rate": 2.7500000000000004e-05,
|
93 |
+
"loss": 2.2338,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.04054054054054054,
|
98 |
+
"grad_norm": 0.7733440491356615,
|
99 |
+
"learning_rate": 3e-05,
|
100 |
+
"loss": 2.2148,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.04391891891891892,
|
105 |
+
"grad_norm": 0.7510878886656168,
|
106 |
+
"learning_rate": 3.2500000000000004e-05,
|
107 |
+
"loss": 2.243,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.0472972972972973,
|
112 |
+
"grad_norm": 0.6210806018904155,
|
113 |
+
"learning_rate": 3.5e-05,
|
114 |
+
"loss": 1.9863,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.05067567567567568,
|
119 |
+
"grad_norm": 1.018373738736693,
|
120 |
+
"learning_rate": 3.7500000000000003e-05,
|
121 |
+
"loss": 2.0294,
|
122 |
+
"step": 15
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.05405405405405406,
|
126 |
+
"grad_norm": 0.771759792529477,
|
127 |
+
"learning_rate": 4e-05,
|
128 |
+
"loss": 2.0353,
|
129 |
+
"step": 16
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.057432432432432436,
|
133 |
+
"grad_norm": 0.5625682320002908,
|
134 |
+
"learning_rate": 4.25e-05,
|
135 |
+
"loss": 2.0775,
|
136 |
+
"step": 17
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.060810810810810814,
|
140 |
+
"grad_norm": 0.5157565411105806,
|
141 |
+
"learning_rate": 4.5e-05,
|
142 |
+
"loss": 2.1791,
|
143 |
+
"step": 18
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.06418918918918919,
|
147 |
+
"grad_norm": 0.8173537204599863,
|
148 |
+
"learning_rate": 4.75e-05,
|
149 |
+
"loss": 2.0549,
|
150 |
+
"step": 19
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.06756756756756757,
|
154 |
+
"grad_norm": 2.5851976259061664,
|
155 |
+
"learning_rate": 5e-05,
|
156 |
+
"loss": 2.0757,
|
157 |
+
"step": 20
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.07094594594594594,
|
161 |
+
"grad_norm": 0.5130578194248145,
|
162 |
+
"learning_rate": 4.999854243002125e-05,
|
163 |
+
"loss": 2.2505,
|
164 |
+
"step": 21
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.07432432432432433,
|
168 |
+
"grad_norm": 0.5786770218696188,
|
169 |
+
"learning_rate": 4.999416990893036e-05,
|
170 |
+
"loss": 2.2533,
|
171 |
+
"step": 22
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.0777027027027027,
|
175 |
+
"grad_norm": 0.8219446198677083,
|
176 |
+
"learning_rate": 4.998688300323891e-05,
|
177 |
+
"loss": 2.1092,
|
178 |
+
"step": 23
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.08108108108108109,
|
182 |
+
"grad_norm": 0.7123342305131811,
|
183 |
+
"learning_rate": 4.997668265705137e-05,
|
184 |
+
"loss": 2.3369,
|
185 |
+
"step": 24
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.08445945945945946,
|
189 |
+
"grad_norm": 0.44584577341815756,
|
190 |
+
"learning_rate": 4.9963570191942696e-05,
|
191 |
+
"loss": 2.0125,
|
192 |
+
"step": 25
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.08783783783783784,
|
196 |
+
"grad_norm": 0.5308641065159894,
|
197 |
+
"learning_rate": 4.994754730678713e-05,
|
198 |
+
"loss": 2.0653,
|
199 |
+
"step": 26
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.09121621621621621,
|
203 |
+
"grad_norm": 0.4833891468070717,
|
204 |
+
"learning_rate": 4.992861607753817e-05,
|
205 |
+
"loss": 2.0177,
|
206 |
+
"step": 27
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.0945945945945946,
|
210 |
+
"grad_norm": 0.4487741255853019,
|
211 |
+
"learning_rate": 4.9906778956959454e-05,
|
212 |
+
"loss": 1.9773,
|
213 |
+
"step": 28
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.09797297297297297,
|
217 |
+
"grad_norm": 0.7070413556606907,
|
218 |
+
"learning_rate": 4.988203877430713e-05,
|
219 |
+
"loss": 2.0163,
|
220 |
+
"step": 29
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.10135135135135136,
|
224 |
+
"grad_norm": 0.6433406570980086,
|
225 |
+
"learning_rate": 4.985439873496321e-05,
|
226 |
+
"loss": 2.055,
|
227 |
+
"step": 30
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.10135135135135136,
|
231 |
+
"eval_loss": 2.022883653640747,
|
232 |
+
"eval_runtime": 194.2976,
|
233 |
+
"eval_samples_per_second": 0.257,
|
234 |
+
"eval_steps_per_second": 0.067,
|
235 |
+
"step": 30
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 0.10472972972972973,
|
239 |
+
"grad_norm": 1.9573381693992367,
|
240 |
+
"learning_rate": 4.982386242002024e-05,
|
241 |
+
"loss": 2.3371,
|
242 |
+
"step": 31
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.10810810810810811,
|
246 |
+
"grad_norm": 1.6578265269127788,
|
247 |
+
"learning_rate": 4.979043378581744e-05,
|
248 |
+
"loss": 2.1288,
|
249 |
+
"step": 32
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.11148648648648649,
|
253 |
+
"grad_norm": 0.5544836623908992,
|
254 |
+
"learning_rate": 4.975411716342802e-05,
|
255 |
+
"loss": 2.1887,
|
256 |
+
"step": 33
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 0.11486486486486487,
|
260 |
+
"grad_norm": 0.5455040506142,
|
261 |
+
"learning_rate": 4.971491725809807e-05,
|
262 |
+
"loss": 2.1214,
|
263 |
+
"step": 34
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.11824324324324324,
|
267 |
+
"grad_norm": 0.5065209751020103,
|
268 |
+
"learning_rate": 4.967283914863693e-05,
|
269 |
+
"loss": 2.1692,
|
270 |
+
"step": 35
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.12162162162162163,
|
274 |
+
"grad_norm": 0.6453232517165945,
|
275 |
+
"learning_rate": 4.96278882867592e-05,
|
276 |
+
"loss": 2.0598,
|
277 |
+
"step": 36
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 0.125,
|
281 |
+
"grad_norm": 1.1731862208697716,
|
282 |
+
"learning_rate": 4.9580070496378364e-05,
|
283 |
+
"loss": 2.2156,
|
284 |
+
"step": 37
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.12837837837837837,
|
288 |
+
"grad_norm": 0.7667101172051888,
|
289 |
+
"learning_rate": 4.952939197285227e-05,
|
290 |
+
"loss": 2.1392,
|
291 |
+
"step": 38
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.13175675675675674,
|
295 |
+
"grad_norm": 0.41781856442196297,
|
296 |
+
"learning_rate": 4.947585928218041e-05,
|
297 |
+
"loss": 2.1534,
|
298 |
+
"step": 39
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.13513513513513514,
|
302 |
+
"grad_norm": 0.5945736341225079,
|
303 |
+
"learning_rate": 4.9419479360153286e-05,
|
304 |
+
"loss": 1.9795,
|
305 |
+
"step": 40
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.13851351351351351,
|
309 |
+
"grad_norm": 0.6467707595603454,
|
310 |
+
"learning_rate": 4.936025951145368e-05,
|
311 |
+
"loss": 2.0017,
|
312 |
+
"step": 41
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.14189189189189189,
|
316 |
+
"grad_norm": 0.5109600024808127,
|
317 |
+
"learning_rate": 4.929820740871039e-05,
|
318 |
+
"loss": 2.2144,
|
319 |
+
"step": 42
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"epoch": 0.14527027027027026,
|
323 |
+
"grad_norm": 1.0548277894819795,
|
324 |
+
"learning_rate": 4.9233331091504034e-05,
|
325 |
+
"loss": 2.0657,
|
326 |
+
"step": 43
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.14864864864864866,
|
330 |
+
"grad_norm": 0.6580975841596574,
|
331 |
+
"learning_rate": 4.916563896532549e-05,
|
332 |
+
"loss": 2.1431,
|
333 |
+
"step": 44
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.15202702702702703,
|
337 |
+
"grad_norm": 0.3988619886160755,
|
338 |
+
"learning_rate": 4.9095139800486824e-05,
|
339 |
+
"loss": 2.0123,
|
340 |
+
"step": 45
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"epoch": 0.1554054054054054,
|
344 |
+
"grad_norm": 0.5209858406284475,
|
345 |
+
"learning_rate": 4.9021842730985036e-05,
|
346 |
+
"loss": 2.2487,
|
347 |
+
"step": 46
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"epoch": 0.15878378378378377,
|
351 |
+
"grad_norm": 0.5433634333987769,
|
352 |
+
"learning_rate": 4.894575725331862e-05,
|
353 |
+
"loss": 2.1736,
|
354 |
+
"step": 47
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.16216216216216217,
|
358 |
+
"grad_norm": 0.5109855249570185,
|
359 |
+
"learning_rate": 4.886689322525719e-05,
|
360 |
+
"loss": 2.0823,
|
361 |
+
"step": 48
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.16554054054054054,
|
365 |
+
"grad_norm": 0.6194335580813743,
|
366 |
+
"learning_rate": 4.878526086456426e-05,
|
367 |
+
"loss": 2.1036,
|
368 |
+
"step": 49
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.16891891891891891,
|
372 |
+
"grad_norm": 1.0780413583147488,
|
373 |
+
"learning_rate": 4.8700870747673466e-05,
|
374 |
+
"loss": 2.0302,
|
375 |
+
"step": 50
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.17229729729729729,
|
379 |
+
"grad_norm": 0.580340495769622,
|
380 |
+
"learning_rate": 4.8613733808318204e-05,
|
381 |
+
"loss": 2.1776,
|
382 |
+
"step": 51
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"epoch": 0.17567567567567569,
|
386 |
+
"grad_norm": 0.8129429382764808,
|
387 |
+
"learning_rate": 4.85238613361151e-05,
|
388 |
+
"loss": 2.0965,
|
389 |
+
"step": 52
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"epoch": 0.17905405405405406,
|
393 |
+
"grad_norm": 0.7779782864994534,
|
394 |
+
"learning_rate": 4.8431264975101245e-05,
|
395 |
+
"loss": 2.1582,
|
396 |
+
"step": 53
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.18243243243243243,
|
400 |
+
"grad_norm": 0.8528745581545691,
|
401 |
+
"learning_rate": 4.8335956722225616e-05,
|
402 |
+
"loss": 2.1511,
|
403 |
+
"step": 54
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.1858108108108108,
|
407 |
+
"grad_norm": 0.49188324413548323,
|
408 |
+
"learning_rate": 4.823794892579471e-05,
|
409 |
+
"loss": 2.1583,
|
410 |
+
"step": 55
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.1891891891891892,
|
414 |
+
"grad_norm": 0.724195478643155,
|
415 |
+
"learning_rate": 4.8137254283872696e-05,
|
416 |
+
"loss": 1.9438,
|
417 |
+
"step": 56
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.19256756756756757,
|
421 |
+
"grad_norm": 0.8754624301347438,
|
422 |
+
"learning_rate": 4.803388584263618e-05,
|
423 |
+
"loss": 2.1349,
|
424 |
+
"step": 57
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"epoch": 0.19594594594594594,
|
428 |
+
"grad_norm": 0.4870044791836658,
|
429 |
+
"learning_rate": 4.7927856994684e-05,
|
430 |
+
"loss": 2.0239,
|
431 |
+
"step": 58
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 0.19932432432432431,
|
435 |
+
"grad_norm": 0.5041896039366629,
|
436 |
+
"learning_rate": 4.781918147730199e-05,
|
437 |
+
"loss": 2.0841,
|
438 |
+
"step": 59
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 0.20270270270270271,
|
442 |
+
"grad_norm": 0.4874068239264915,
|
443 |
+
"learning_rate": 4.7707873370683163e-05,
|
444 |
+
"loss": 2.1407,
|
445 |
+
"step": 60
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.20270270270270271,
|
449 |
+
"eval_loss": 2.015751838684082,
|
450 |
+
"eval_runtime": 196.268,
|
451 |
+
"eval_samples_per_second": 0.255,
|
452 |
+
"eval_steps_per_second": 0.066,
|
453 |
+
"step": 60
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.20608108108108109,
|
457 |
+
"grad_norm": 0.5424018707478311,
|
458 |
+
"learning_rate": 4.75939470961035e-05,
|
459 |
+
"loss": 2.186,
|
460 |
+
"step": 61
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"epoch": 0.20945945945945946,
|
464 |
+
"grad_norm": 0.5115180976703219,
|
465 |
+
"learning_rate": 4.747741741405344e-05,
|
466 |
+
"loss": 2.2014,
|
467 |
+
"step": 62
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.21283783783783783,
|
471 |
+
"grad_norm": 0.5058558197015601,
|
472 |
+
"learning_rate": 4.735829942232555e-05,
|
473 |
+
"loss": 2.0927,
|
474 |
+
"step": 63
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 0.21621621621621623,
|
478 |
+
"grad_norm": 0.8021043767946636,
|
479 |
+
"learning_rate": 4.7236608554058375e-05,
|
480 |
+
"loss": 2.1884,
|
481 |
+
"step": 64
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 0.2195945945945946,
|
485 |
+
"grad_norm": 0.5293842363703689,
|
486 |
+
"learning_rate": 4.711236057573691e-05,
|
487 |
+
"loss": 2.0714,
|
488 |
+
"step": 65
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.22297297297297297,
|
492 |
+
"grad_norm": 0.48722486629288786,
|
493 |
+
"learning_rate": 4.6985571585149876e-05,
|
494 |
+
"loss": 2.0562,
|
495 |
+
"step": 66
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.22635135135135134,
|
499 |
+
"grad_norm": 0.4279248526312935,
|
500 |
+
"learning_rate": 4.685625800930406e-05,
|
501 |
+
"loss": 2.0847,
|
502 |
+
"step": 67
|
503 |
+
},
|
504 |
+
{
|
505 |
+
"epoch": 0.22972972972972974,
|
506 |
+
"grad_norm": 0.5130161800768928,
|
507 |
+
"learning_rate": 4.6724436602296e-05,
|
508 |
+
"loss": 2.0617,
|
509 |
+
"step": 68
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.23310810810810811,
|
513 |
+
"grad_norm": 0.7460272297512813,
|
514 |
+
"learning_rate": 4.659012444314128e-05,
|
515 |
+
"loss": 2.1029,
|
516 |
+
"step": 69
|
517 |
+
},
|
518 |
+
{
|
519 |
+
"epoch": 0.23648648648648649,
|
520 |
+
"grad_norm": 0.4943699960691202,
|
521 |
+
"learning_rate": 4.645333893356176e-05,
|
522 |
+
"loss": 1.9948,
|
523 |
+
"step": 70
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"epoch": 0.23986486486486486,
|
527 |
+
"grad_norm": 0.6350670407835639,
|
528 |
+
"learning_rate": 4.6314097795731e-05,
|
529 |
+
"loss": 2.0935,
|
530 |
+
"step": 71
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.24324324324324326,
|
534 |
+
"grad_norm": 0.542940777570525,
|
535 |
+
"learning_rate": 4.6172419069978065e-05,
|
536 |
+
"loss": 2.0267,
|
537 |
+
"step": 72
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.24662162162162163,
|
541 |
+
"grad_norm": 0.4567422527911003,
|
542 |
+
"learning_rate": 4.602832111245029e-05,
|
543 |
+
"loss": 1.9971,
|
544 |
+
"step": 73
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"epoch": 0.25,
|
548 |
+
"grad_norm": 0.4699317313725709,
|
549 |
+
"learning_rate": 4.5881822592734946e-05,
|
550 |
+
"loss": 2.1758,
|
551 |
+
"step": 74
|
552 |
+
},
|
553 |
+
{
|
554 |
+
"epoch": 0.2533783783783784,
|
555 |
+
"grad_norm": 0.6913326755097541,
|
556 |
+
"learning_rate": 4.573294249144041e-05,
|
557 |
+
"loss": 2.1574,
|
558 |
+
"step": 75
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.25675675675675674,
|
562 |
+
"grad_norm": 0.4362574963180428,
|
563 |
+
"learning_rate": 4.5581700097737015e-05,
|
564 |
+
"loss": 2.0498,
|
565 |
+
"step": 76
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.26013513513513514,
|
569 |
+
"grad_norm": 0.6932798791839507,
|
570 |
+
"learning_rate": 4.542811500685785e-05,
|
571 |
+
"loss": 2.0777,
|
572 |
+
"step": 77
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.2635135135135135,
|
576 |
+
"grad_norm": 0.4469936094893796,
|
577 |
+
"learning_rate": 4.527220711756007e-05,
|
578 |
+
"loss": 2.1046,
|
579 |
+
"step": 78
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 0.2668918918918919,
|
583 |
+
"grad_norm": 0.5112163825070385,
|
584 |
+
"learning_rate": 4.511399662954667e-05,
|
585 |
+
"loss": 2.0955,
|
586 |
+
"step": 79
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 0.2702702702702703,
|
590 |
+
"grad_norm": 0.4272672573543929,
|
591 |
+
"learning_rate": 4.4953504040849445e-05,
|
592 |
+
"loss": 2.1927,
|
593 |
+
"step": 80
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"epoch": 0.27364864864864863,
|
597 |
+
"grad_norm": 0.4203647309881028,
|
598 |
+
"learning_rate": 4.479075014517321e-05,
|
599 |
+
"loss": 2.0421,
|
600 |
+
"step": 81
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 0.27702702702702703,
|
604 |
+
"grad_norm": 0.5896256230009808,
|
605 |
+
"learning_rate": 4.462575602920171e-05,
|
606 |
+
"loss": 2.109,
|
607 |
+
"step": 82
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.28040540540540543,
|
611 |
+
"grad_norm": 0.7482696034746834,
|
612 |
+
"learning_rate": 4.445854306986563e-05,
|
613 |
+
"loss": 2.0851,
|
614 |
+
"step": 83
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.28378378378378377,
|
618 |
+
"grad_norm": 0.508289422303338,
|
619 |
+
"learning_rate": 4.428913293157293e-05,
|
620 |
+
"loss": 2.1759,
|
621 |
+
"step": 84
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.28716216216216217,
|
625 |
+
"grad_norm": 0.4749189097462539,
|
626 |
+
"learning_rate": 4.411754756340198e-05,
|
627 |
+
"loss": 2.0721,
|
628 |
+
"step": 85
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"epoch": 0.2905405405405405,
|
632 |
+
"grad_norm": 0.493594282927666,
|
633 |
+
"learning_rate": 4.3943809196257794e-05,
|
634 |
+
"loss": 2.0351,
|
635 |
+
"step": 86
|
636 |
+
},
|
637 |
+
{
|
638 |
+
"epoch": 0.2939189189189189,
|
639 |
+
"grad_norm": 0.4836545743981663,
|
640 |
+
"learning_rate": 4.376794033999177e-05,
|
641 |
+
"loss": 2.0896,
|
642 |
+
"step": 87
|
643 |
+
},
|
644 |
+
{
|
645 |
+
"epoch": 0.2972972972972973,
|
646 |
+
"grad_norm": 0.47767898533003106,
|
647 |
+
"learning_rate": 4.358996378048524e-05,
|
648 |
+
"loss": 2.083,
|
649 |
+
"step": 88
|
650 |
+
},
|
651 |
+
{
|
652 |
+
"epoch": 0.30067567567567566,
|
653 |
+
"grad_norm": 0.4390064059005752,
|
654 |
+
"learning_rate": 4.340990257669732e-05,
|
655 |
+
"loss": 2.0627,
|
656 |
+
"step": 89
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.30405405405405406,
|
660 |
+
"grad_norm": 0.4601711355647231,
|
661 |
+
"learning_rate": 4.3227780057677345e-05,
|
662 |
+
"loss": 2.0997,
|
663 |
+
"step": 90
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.30405405405405406,
|
667 |
+
"eval_loss": 2.011120080947876,
|
668 |
+
"eval_runtime": 190.8365,
|
669 |
+
"eval_samples_per_second": 0.262,
|
670 |
+
"eval_steps_per_second": 0.068,
|
671 |
+
"step": 90
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 0.30743243243243246,
|
675 |
+
"grad_norm": 0.5654017461216198,
|
676 |
+
"learning_rate": 4.304361981954231e-05,
|
677 |
+
"loss": 2.2149,
|
678 |
+
"step": 91
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 0.3108108108108108,
|
682 |
+
"grad_norm": 0.5064873219371222,
|
683 |
+
"learning_rate": 4.285744572241972e-05,
|
684 |
+
"loss": 2.1093,
|
685 |
+
"step": 92
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"epoch": 0.3141891891891892,
|
689 |
+
"grad_norm": 0.46470652155232134,
|
690 |
+
"learning_rate": 4.266928188735621e-05,
|
691 |
+
"loss": 2.1098,
|
692 |
+
"step": 93
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.31756756756756754,
|
696 |
+
"grad_norm": 0.4413493288478021,
|
697 |
+
"learning_rate": 4.247915269319241e-05,
|
698 |
+
"loss": 2.1431,
|
699 |
+
"step": 94
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 0.32094594594594594,
|
703 |
+
"grad_norm": 1.0020586721524896,
|
704 |
+
"learning_rate": 4.2287082773404386e-05,
|
705 |
+
"loss": 2.0877,
|
706 |
+
"step": 95
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.32432432432432434,
|
710 |
+
"grad_norm": 0.4848089444845991,
|
711 |
+
"learning_rate": 4.209309701291201e-05,
|
712 |
+
"loss": 2.1175,
|
713 |
+
"step": 96
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.3277027027027027,
|
717 |
+
"grad_norm": 0.5555159336979827,
|
718 |
+
"learning_rate": 4.189722054485492e-05,
|
719 |
+
"loss": 2.1563,
|
720 |
+
"step": 97
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 0.3310810810810811,
|
724 |
+
"grad_norm": 0.3802895433591588,
|
725 |
+
"learning_rate": 4.169947874733619e-05,
|
726 |
+
"loss": 2.0732,
|
727 |
+
"step": 98
|
728 |
+
},
|
729 |
+
{
|
730 |
+
"epoch": 0.3344594594594595,
|
731 |
+
"grad_norm": 0.7320601930371831,
|
732 |
+
"learning_rate": 4.149989724013425e-05,
|
733 |
+
"loss": 2.1452,
|
734 |
+
"step": 99
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.33783783783783783,
|
738 |
+
"grad_norm": 0.8602357197050848,
|
739 |
+
"learning_rate": 4.1298501881383624e-05,
|
740 |
+
"loss": 2.1766,
|
741 |
+
"step": 100
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 0.34121621621621623,
|
745 |
+
"grad_norm": 0.5831812051877154,
|
746 |
+
"learning_rate": 4.109531876422463e-05,
|
747 |
+
"loss": 2.1593,
|
748 |
+
"step": 101
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.34459459459459457,
|
752 |
+
"grad_norm": 0.7665489432929005,
|
753 |
+
"learning_rate": 4.089037421342277e-05,
|
754 |
+
"loss": 2.0295,
|
755 |
+
"step": 102
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"epoch": 0.34797297297297297,
|
759 |
+
"grad_norm": 0.45337471468141477,
|
760 |
+
"learning_rate": 4.0683694781958e-05,
|
761 |
+
"loss": 2.1087,
|
762 |
+
"step": 103
|
763 |
+
},
|
764 |
+
{
|
765 |
+
"epoch": 0.35135135135135137,
|
766 |
+
"grad_norm": 0.4591955107711257,
|
767 |
+
"learning_rate": 4.047530724758451e-05,
|
768 |
+
"loss": 2.0354,
|
769 |
+
"step": 104
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.3547297297297297,
|
773 |
+
"grad_norm": 0.7505711753697653,
|
774 |
+
"learning_rate": 4.026523860936132e-05,
|
775 |
+
"loss": 2.0258,
|
776 |
+
"step": 105
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.3581081081081081,
|
780 |
+
"grad_norm": 0.589397231315979,
|
781 |
+
"learning_rate": 4.005351608415426e-05,
|
782 |
+
"loss": 2.0051,
|
783 |
+
"step": 106
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.3614864864864865,
|
787 |
+
"grad_norm": 0.6872824203092515,
|
788 |
+
"learning_rate": 3.9840167103109675e-05,
|
789 |
+
"loss": 1.9355,
|
790 |
+
"step": 107
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"epoch": 0.36486486486486486,
|
794 |
+
"grad_norm": 0.45802674220232215,
|
795 |
+
"learning_rate": 3.9625219308100455e-05,
|
796 |
+
"loss": 2.0836,
|
797 |
+
"step": 108
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.36824324324324326,
|
801 |
+
"grad_norm": 0.5524787455898191,
|
802 |
+
"learning_rate": 3.940870054814462e-05,
|
803 |
+
"loss": 2.0474,
|
804 |
+
"step": 109
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 0.3716216216216216,
|
808 |
+
"grad_norm": 0.38416177227514725,
|
809 |
+
"learning_rate": 3.919063887579726e-05,
|
810 |
+
"loss": 2.0985,
|
811 |
+
"step": 110
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.375,
|
815 |
+
"grad_norm": 0.45960539321926364,
|
816 |
+
"learning_rate": 3.897106254351587e-05,
|
817 |
+
"loss": 2.0129,
|
818 |
+
"step": 111
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.3783783783783784,
|
822 |
+
"grad_norm": 0.37861955022931376,
|
823 |
+
"learning_rate": 3.875e-05,
|
824 |
+
"loss": 2.1427,
|
825 |
+
"step": 112
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.38175675675675674,
|
829 |
+
"grad_norm": 0.581523763120522,
|
830 |
+
"learning_rate": 3.852747988650539e-05,
|
831 |
+
"loss": 2.0318,
|
832 |
+
"step": 113
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"epoch": 0.38513513513513514,
|
836 |
+
"grad_norm": 0.3504600135974039,
|
837 |
+
"learning_rate": 3.83035310331331e-05,
|
838 |
+
"loss": 2.033,
|
839 |
+
"step": 114
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.3885135135135135,
|
843 |
+
"grad_norm": 0.4242352094167052,
|
844 |
+
"learning_rate": 3.807818245509429e-05,
|
845 |
+
"loss": 2.034,
|
846 |
+
"step": 115
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 0.3918918918918919,
|
850 |
+
"grad_norm": 0.4250673616692747,
|
851 |
+
"learning_rate": 3.785146334895093e-05,
|
852 |
+
"loss": 2.1702,
|
853 |
+
"step": 116
|
854 |
+
},
|
855 |
+
{
|
856 |
+
"epoch": 0.3952702702702703,
|
857 |
+
"grad_norm": 3.2751318573643617,
|
858 |
+
"learning_rate": 3.762340308883302e-05,
|
859 |
+
"loss": 2.1026,
|
860 |
+
"step": 117
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.39864864864864863,
|
864 |
+
"grad_norm": 0.48584128738743915,
|
865 |
+
"learning_rate": 3.739403122263288e-05,
|
866 |
+
"loss": 2.22,
|
867 |
+
"step": 118
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.40202702702702703,
|
871 |
+
"grad_norm": 0.4187766943285619,
|
872 |
+
"learning_rate": 3.716337746817685e-05,
|
873 |
+
"loss": 2.1541,
|
874 |
+
"step": 119
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 0.40540540540540543,
|
878 |
+
"grad_norm": 0.5051183151449187,
|
879 |
+
"learning_rate": 3.6931471709374946e-05,
|
880 |
+
"loss": 2.1113,
|
881 |
+
"step": 120
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 0.40540540540540543,
|
885 |
+
"eval_loss": 2.009887218475342,
|
886 |
+
"eval_runtime": 193.8883,
|
887 |
+
"eval_samples_per_second": 0.258,
|
888 |
+
"eval_steps_per_second": 0.067,
|
889 |
+
"step": 120
|
890 |
+
},
|
891 |
+
{
|
892 |
+
"epoch": 0.40878378378378377,
|
893 |
+
"grad_norm": 0.40423483975901836,
|
894 |
+
"learning_rate": 3.669834399234913e-05,
|
895 |
+
"loss": 2.0209,
|
896 |
+
"step": 121
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.41216216216216217,
|
900 |
+
"grad_norm": 0.3825955755250103,
|
901 |
+
"learning_rate": 3.646402452154043e-05,
|
902 |
+
"loss": 2.074,
|
903 |
+
"step": 122
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 0.4155405405405405,
|
907 |
+
"grad_norm": 1.4013949742645142,
|
908 |
+
"learning_rate": 3.622854365579561e-05,
|
909 |
+
"loss": 2.1807,
|
910 |
+
"step": 123
|
911 |
+
},
|
912 |
+
{
|
913 |
+
"epoch": 0.4189189189189189,
|
914 |
+
"grad_norm": 0.43240866134882766,
|
915 |
+
"learning_rate": 3.5991931904433824e-05,
|
916 |
+
"loss": 1.9988,
|
917 |
+
"step": 124
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.4222972972972973,
|
921 |
+
"grad_norm": 0.4777714379483413,
|
922 |
+
"learning_rate": 3.575421992329377e-05,
|
923 |
+
"loss": 2.0801,
|
924 |
+
"step": 125
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.42567567567567566,
|
928 |
+
"grad_norm": 0.49357523405169307,
|
929 |
+
"learning_rate": 3.551543851076188e-05,
|
930 |
+
"loss": 2.0035,
|
931 |
+
"step": 126
|
932 |
+
},
|
933 |
+
{
|
934 |
+
"epoch": 0.42905405405405406,
|
935 |
+
"grad_norm": 0.3447821776586979,
|
936 |
+
"learning_rate": 3.5275618603782006e-05,
|
937 |
+
"loss": 2.0435,
|
938 |
+
"step": 127
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.43243243243243246,
|
942 |
+
"grad_norm": 0.3718901049854852,
|
943 |
+
"learning_rate": 3.503479127384719e-05,
|
944 |
+
"loss": 1.8828,
|
945 |
+
"step": 128
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.4358108108108108,
|
949 |
+
"grad_norm": 0.3888324394883177,
|
950 |
+
"learning_rate": 3.479298772297398e-05,
|
951 |
+
"loss": 2.1094,
|
952 |
+
"step": 129
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 0.4391891891891892,
|
956 |
+
"grad_norm": 0.5267690929558577,
|
957 |
+
"learning_rate": 3.4550239279659854e-05,
|
958 |
+
"loss": 2.1593,
|
959 |
+
"step": 130
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 0.44256756756756754,
|
963 |
+
"grad_norm": 0.4636315581971976,
|
964 |
+
"learning_rate": 3.4306577394824207e-05,
|
965 |
+
"loss": 2.1605,
|
966 |
+
"step": 131
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 0.44594594594594594,
|
970 |
+
"grad_norm": 0.3968487601273563,
|
971 |
+
"learning_rate": 3.406203363773356e-05,
|
972 |
+
"loss": 2.0023,
|
973 |
+
"step": 132
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 0.44932432432432434,
|
977 |
+
"grad_norm": 0.392460435962094,
|
978 |
+
"learning_rate": 3.381663969191137e-05,
|
979 |
+
"loss": 2.1517,
|
980 |
+
"step": 133
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.4527027027027027,
|
984 |
+
"grad_norm": 0.4031589419917055,
|
985 |
+
"learning_rate": 3.3570427351033046e-05,
|
986 |
+
"loss": 2.0701,
|
987 |
+
"step": 134
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 0.4560810810810811,
|
991 |
+
"grad_norm": 0.4253231691696294,
|
992 |
+
"learning_rate": 3.332342851480672e-05,
|
993 |
+
"loss": 2.0944,
|
994 |
+
"step": 135
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 0.4594594594594595,
|
998 |
+
"grad_norm": 1.089550042036897,
|
999 |
+
"learning_rate": 3.307567518484025e-05,
|
1000 |
+
"loss": 2.1879,
|
1001 |
+
"step": 136
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 0.46283783783783783,
|
1005 |
+
"grad_norm": 0.5433174961880026,
|
1006 |
+
"learning_rate": 3.282719946049505e-05,
|
1007 |
+
"loss": 2.1142,
|
1008 |
+
"step": 137
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 0.46621621621621623,
|
1012 |
+
"grad_norm": 0.47522024279968983,
|
1013 |
+
"learning_rate": 3.257803353472724e-05,
|
1014 |
+
"loss": 2.0765,
|
1015 |
+
"step": 138
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.46959459459459457,
|
1019 |
+
"grad_norm": 0.6397031743657627,
|
1020 |
+
"learning_rate": 3.232820968991664e-05,
|
1021 |
+
"loss": 2.0565,
|
1022 |
+
"step": 139
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.47297297297297297,
|
1026 |
+
"grad_norm": 0.8231847588094275,
|
1027 |
+
"learning_rate": 3.207776029368427e-05,
|
1028 |
+
"loss": 2.1382,
|
1029 |
+
"step": 140
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.47635135135135137,
|
1033 |
+
"grad_norm": 0.4277815234715947,
|
1034 |
+
"learning_rate": 3.1826717794698635e-05,
|
1035 |
+
"loss": 2.1454,
|
1036 |
+
"step": 141
|
1037 |
+
},
|
1038 |
+
{
|
1039 |
+
"epoch": 0.4797297297297297,
|
1040 |
+
"grad_norm": 0.395176536808308,
|
1041 |
+
"learning_rate": 3.157511471847176e-05,
|
1042 |
+
"loss": 2.0293,
|
1043 |
+
"step": 142
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 0.4831081081081081,
|
1047 |
+
"grad_norm": 0.42124877734068217,
|
1048 |
+
"learning_rate": 3.1322983663145e-05,
|
1049 |
+
"loss": 2.0417,
|
1050 |
+
"step": 143
|
1051 |
+
},
|
1052 |
+
{
|
1053 |
+
"epoch": 0.4864864864864865,
|
1054 |
+
"grad_norm": 0.6103856586396839,
|
1055 |
+
"learning_rate": 3.107035729526566e-05,
|
1056 |
+
"loss": 2.0703,
|
1057 |
+
"step": 144
|
1058 |
+
},
|
1059 |
+
{
|
1060 |
+
"epoch": 0.48986486486486486,
|
1061 |
+
"grad_norm": 0.40802626443551787,
|
1062 |
+
"learning_rate": 3.081726834555458e-05,
|
1063 |
+
"loss": 1.9202,
|
1064 |
+
"step": 145
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.49324324324324326,
|
1068 |
+
"grad_norm": 0.4038507240265364,
|
1069 |
+
"learning_rate": 3.0563749604665556e-05,
|
1070 |
+
"loss": 2.1105,
|
1071 |
+
"step": 146
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.4966216216216216,
|
1075 |
+
"grad_norm": 0.39745914058435033,
|
1076 |
+
"learning_rate": 3.0309833918936865e-05,
|
1077 |
+
"loss": 2.0854,
|
1078 |
+
"step": 147
|
1079 |
+
},
|
1080 |
+
{
|
1081 |
+
"epoch": 0.5,
|
1082 |
+
"grad_norm": 0.39094920659893395,
|
1083 |
+
"learning_rate": 3.0055554186135688e-05,
|
1084 |
+
"loss": 2.1638,
|
1085 |
+
"step": 148
|
1086 |
+
},
|
1087 |
+
{
|
1088 |
+
"epoch": 0.5033783783783784,
|
1089 |
+
"grad_norm": 0.4684851166837971,
|
1090 |
+
"learning_rate": 2.980094335119577e-05,
|
1091 |
+
"loss": 2.0368,
|
1092 |
+
"step": 149
|
1093 |
+
},
|
1094 |
+
{
|
1095 |
+
"epoch": 0.5067567567567568,
|
1096 |
+
"grad_norm": 0.8309495298034889,
|
1097 |
+
"learning_rate": 2.9546034401949064e-05,
|
1098 |
+
"loss": 2.1695,
|
1099 |
+
"step": 150
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"epoch": 0.5067567567567568,
|
1103 |
+
"eval_loss": 2.0075740814208984,
|
1104 |
+
"eval_runtime": 193.1213,
|
1105 |
+
"eval_samples_per_second": 0.259,
|
1106 |
+
"eval_steps_per_second": 0.067,
|
1107 |
+
"step": 150
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.5101351351351351,
|
1111 |
+
"grad_norm": 0.5583192813687627,
|
1112 |
+
"learning_rate": 2.9290860364851702e-05,
|
1113 |
+
"loss": 2.0582,
|
1114 |
+
"step": 151
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.5135135135135135,
|
1118 |
+
"grad_norm": 0.42473795943255627,
|
1119 |
+
"learning_rate": 2.90354543007051e-05,
|
1120 |
+
"loss": 2.0871,
|
1121 |
+
"step": 152
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.5168918918918919,
|
1125 |
+
"grad_norm": 0.4247509513157766,
|
1126 |
+
"learning_rate": 2.877984930037251e-05,
|
1127 |
+
"loss": 2.0964,
|
1128 |
+
"step": 153
|
1129 |
+
},
|
1130 |
+
{
|
1131 |
+
"epoch": 0.5202702702702703,
|
1132 |
+
"grad_norm": 0.8778087000903096,
|
1133 |
+
"learning_rate": 2.8524078480491684e-05,
|
1134 |
+
"loss": 2.0506,
|
1135 |
+
"step": 154
|
1136 |
+
},
|
1137 |
+
{
|
1138 |
+
"epoch": 0.5236486486486487,
|
1139 |
+
"grad_norm": 0.501109409670388,
|
1140 |
+
"learning_rate": 2.826817497918428e-05,
|
1141 |
+
"loss": 2.1435,
|
1142 |
+
"step": 155
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.527027027027027,
|
1146 |
+
"grad_norm": 0.7730432872928119,
|
1147 |
+
"learning_rate": 2.8012171951762378e-05,
|
1148 |
+
"loss": 2.0909,
|
1149 |
+
"step": 156
|
1150 |
+
},
|
1151 |
+
{
|
1152 |
+
"epoch": 0.5304054054054054,
|
1153 |
+
"grad_norm": 0.4007388361090252,
|
1154 |
+
"learning_rate": 2.7756102566432845e-05,
|
1155 |
+
"loss": 2.1613,
|
1156 |
+
"step": 157
|
1157 |
+
},
|
1158 |
+
{
|
1159 |
+
"epoch": 0.5337837837837838,
|
1160 |
+
"grad_norm": 0.4121213099878934,
|
1161 |
+
"learning_rate": 2.7500000000000004e-05,
|
1162 |
+
"loss": 2.2213,
|
1163 |
+
"step": 158
|
1164 |
+
},
|
1165 |
+
{
|
1166 |
+
"epoch": 0.5371621621621622,
|
1167 |
+
"grad_norm": 0.4237936256648311,
|
1168 |
+
"learning_rate": 2.7243897433567157e-05,
|
1169 |
+
"loss": 2.1795,
|
1170 |
+
"step": 159
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.5405405405405406,
|
1174 |
+
"grad_norm": 0.41107097005560067,
|
1175 |
+
"learning_rate": 2.6987828048237624e-05,
|
1176 |
+
"loss": 2.0895,
|
1177 |
+
"step": 160
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 0.543918918918919,
|
1181 |
+
"grad_norm": 0.4463337134292773,
|
1182 |
+
"learning_rate": 2.6731825020815725e-05,
|
1183 |
+
"loss": 2.046,
|
1184 |
+
"step": 161
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.5472972972972973,
|
1188 |
+
"grad_norm": 0.5230967905508315,
|
1189 |
+
"learning_rate": 2.6475921519508325e-05,
|
1190 |
+
"loss": 2.0374,
|
1191 |
+
"step": 162
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 0.5506756756756757,
|
1195 |
+
"grad_norm": 0.414839716539812,
|
1196 |
+
"learning_rate": 2.62201506996275e-05,
|
1197 |
+
"loss": 2.2485,
|
1198 |
+
"step": 163
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 0.5540540540540541,
|
1202 |
+
"grad_norm": 0.38087462228816815,
|
1203 |
+
"learning_rate": 2.5964545699294906e-05,
|
1204 |
+
"loss": 2.0365,
|
1205 |
+
"step": 164
|
1206 |
+
},
|
1207 |
+
{
|
1208 |
+
"epoch": 0.5574324324324325,
|
1209 |
+
"grad_norm": 0.5305482547516058,
|
1210 |
+
"learning_rate": 2.570913963514831e-05,
|
1211 |
+
"loss": 2.0701,
|
1212 |
+
"step": 165
|
1213 |
+
},
|
1214 |
+
{
|
1215 |
+
"epoch": 0.5608108108108109,
|
1216 |
+
"grad_norm": 0.39988875104823635,
|
1217 |
+
"learning_rate": 2.5453965598050944e-05,
|
1218 |
+
"loss": 2.1985,
|
1219 |
+
"step": 166
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 0.5641891891891891,
|
1223 |
+
"grad_norm": 0.6054380331009478,
|
1224 |
+
"learning_rate": 2.5199056648804233e-05,
|
1225 |
+
"loss": 2.1136,
|
1226 |
+
"step": 167
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.5675675675675675,
|
1230 |
+
"grad_norm": 0.39275163056643564,
|
1231 |
+
"learning_rate": 2.4944445813864314e-05,
|
1232 |
+
"loss": 2.0735,
|
1233 |
+
"step": 168
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.5709459459459459,
|
1237 |
+
"grad_norm": 0.7078296605563206,
|
1238 |
+
"learning_rate": 2.469016608106315e-05,
|
1239 |
+
"loss": 2.1578,
|
1240 |
+
"step": 169
|
1241 |
+
},
|
1242 |
+
{
|
1243 |
+
"epoch": 0.5743243243243243,
|
1244 |
+
"grad_norm": 0.439519908152304,
|
1245 |
+
"learning_rate": 2.443625039533446e-05,
|
1246 |
+
"loss": 2.0469,
|
1247 |
+
"step": 170
|
1248 |
+
},
|
1249 |
+
{
|
1250 |
+
"epoch": 0.5777027027027027,
|
1251 |
+
"grad_norm": 0.47171431683346926,
|
1252 |
+
"learning_rate": 2.4182731654445427e-05,
|
1253 |
+
"loss": 2.0609,
|
1254 |
+
"step": 171
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 0.581081081081081,
|
1258 |
+
"grad_norm": 0.43725040423496425,
|
1259 |
+
"learning_rate": 2.3929642704734347e-05,
|
1260 |
+
"loss": 2.1686,
|
1261 |
+
"step": 172
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"epoch": 0.5844594594594594,
|
1265 |
+
"grad_norm": 0.5156240873689197,
|
1266 |
+
"learning_rate": 2.3677016336855002e-05,
|
1267 |
+
"loss": 2.111,
|
1268 |
+
"step": 173
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.5878378378378378,
|
1272 |
+
"grad_norm": 0.478909789809296,
|
1273 |
+
"learning_rate": 2.3424885281528248e-05,
|
1274 |
+
"loss": 2.0993,
|
1275 |
+
"step": 174
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.5912162162162162,
|
1279 |
+
"grad_norm": 0.8822684350527039,
|
1280 |
+
"learning_rate": 2.3173282205301367e-05,
|
1281 |
+
"loss": 2.091,
|
1282 |
+
"step": 175
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 0.5945945945945946,
|
1286 |
+
"grad_norm": 0.5005747298379083,
|
1287 |
+
"learning_rate": 2.2922239706315745e-05,
|
1288 |
+
"loss": 2.0998,
|
1289 |
+
"step": 176
|
1290 |
+
},
|
1291 |
+
{
|
1292 |
+
"epoch": 0.597972972972973,
|
1293 |
+
"grad_norm": 0.38147794073978136,
|
1294 |
+
"learning_rate": 2.2671790310083364e-05,
|
1295 |
+
"loss": 2.0433,
|
1296 |
+
"step": 177
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 0.6013513513513513,
|
1300 |
+
"grad_norm": 0.449696856682795,
|
1301 |
+
"learning_rate": 2.2421966465272765e-05,
|
1302 |
+
"loss": 1.9547,
|
1303 |
+
"step": 178
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 0.6047297297297297,
|
1307 |
+
"grad_norm": 0.4046647546809551,
|
1308 |
+
"learning_rate": 2.217280053950495e-05,
|
1309 |
+
"loss": 2.0109,
|
1310 |
+
"step": 179
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.6081081081081081,
|
1314 |
+
"grad_norm": 0.44319480569143777,
|
1315 |
+
"learning_rate": 2.1924324815159757e-05,
|
1316 |
+
"loss": 2.0782,
|
1317 |
+
"step": 180
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 0.6081081081081081,
|
1321 |
+
"eval_loss": 2.006296157836914,
|
1322 |
+
"eval_runtime": 194.8007,
|
1323 |
+
"eval_samples_per_second": 0.257,
|
1324 |
+
"eval_steps_per_second": 0.067,
|
1325 |
+
"step": 180
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.6114864864864865,
|
1329 |
+
"grad_norm": 0.4245370001741025,
|
1330 |
+
"learning_rate": 2.1676571485193282e-05,
|
1331 |
+
"loss": 1.9819,
|
1332 |
+
"step": 181
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.6148648648648649,
|
1336 |
+
"grad_norm": 0.4123813369355281,
|
1337 |
+
"learning_rate": 2.1429572648966956e-05,
|
1338 |
+
"loss": 2.0597,
|
1339 |
+
"step": 182
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.6182432432432432,
|
1343 |
+
"grad_norm": 0.4870232191555961,
|
1344 |
+
"learning_rate": 2.1183360308088636e-05,
|
1345 |
+
"loss": 2.0595,
|
1346 |
+
"step": 183
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.6216216216216216,
|
1350 |
+
"grad_norm": 0.43367499716068364,
|
1351 |
+
"learning_rate": 2.0937966362266443e-05,
|
1352 |
+
"loss": 1.7438,
|
1353 |
+
"step": 184
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.625,
|
1357 |
+
"grad_norm": 0.3828393006442412,
|
1358 |
+
"learning_rate": 2.06934226051758e-05,
|
1359 |
+
"loss": 2.2068,
|
1360 |
+
"step": 185
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.6283783783783784,
|
1364 |
+
"grad_norm": 0.4948622876303367,
|
1365 |
+
"learning_rate": 2.0449760720340155e-05,
|
1366 |
+
"loss": 2.1126,
|
1367 |
+
"step": 186
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.6317567567567568,
|
1371 |
+
"grad_norm": 0.4073583504258278,
|
1372 |
+
"learning_rate": 2.0207012277026016e-05,
|
1373 |
+
"loss": 2.0846,
|
1374 |
+
"step": 187
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.6351351351351351,
|
1378 |
+
"grad_norm": 0.5109456209828284,
|
1379 |
+
"learning_rate": 1.9965208726152813e-05,
|
1380 |
+
"loss": 2.2111,
|
1381 |
+
"step": 188
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.6385135135135135,
|
1385 |
+
"grad_norm": 0.6271240563609504,
|
1386 |
+
"learning_rate": 1.9724381396217996e-05,
|
1387 |
+
"loss": 2.0691,
|
1388 |
+
"step": 189
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.6418918918918919,
|
1392 |
+
"grad_norm": 0.7995422703795263,
|
1393 |
+
"learning_rate": 1.948456148923813e-05,
|
1394 |
+
"loss": 2.0512,
|
1395 |
+
"step": 190
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.6452702702702703,
|
1399 |
+
"grad_norm": 0.5355787419178449,
|
1400 |
+
"learning_rate": 1.9245780076706233e-05,
|
1401 |
+
"loss": 1.9599,
|
1402 |
+
"step": 191
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.6486486486486487,
|
1406 |
+
"grad_norm": 0.37446732667446725,
|
1407 |
+
"learning_rate": 1.9008068095566178e-05,
|
1408 |
+
"loss": 1.9695,
|
1409 |
+
"step": 192
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.652027027027027,
|
1413 |
+
"grad_norm": 0.4147478978916466,
|
1414 |
+
"learning_rate": 1.8771456344204385e-05,
|
1415 |
+
"loss": 2.1151,
|
1416 |
+
"step": 193
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.6554054054054054,
|
1420 |
+
"grad_norm": 0.922383794900146,
|
1421 |
+
"learning_rate": 1.8535975478459566e-05,
|
1422 |
+
"loss": 2.0877,
|
1423 |
+
"step": 194
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.6587837837837838,
|
1427 |
+
"grad_norm": 0.5037479123782382,
|
1428 |
+
"learning_rate": 1.830165600765087e-05,
|
1429 |
+
"loss": 2.0584,
|
1430 |
+
"step": 195
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.6621621621621622,
|
1434 |
+
"grad_norm": 0.4337707246605357,
|
1435 |
+
"learning_rate": 1.806852829062507e-05,
|
1436 |
+
"loss": 2.1358,
|
1437 |
+
"step": 196
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.6655405405405406,
|
1441 |
+
"grad_norm": 1.0443488522366138,
|
1442 |
+
"learning_rate": 1.783662253182316e-05,
|
1443 |
+
"loss": 2.0686,
|
1444 |
+
"step": 197
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.668918918918919,
|
1448 |
+
"grad_norm": 0.3652644321832928,
|
1449 |
+
"learning_rate": 1.7605968777367116e-05,
|
1450 |
+
"loss": 2.1038,
|
1451 |
+
"step": 198
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.6722972972972973,
|
1455 |
+
"grad_norm": 0.44849286894487655,
|
1456 |
+
"learning_rate": 1.7376596911166987e-05,
|
1457 |
+
"loss": 2.2002,
|
1458 |
+
"step": 199
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.6756756756756757,
|
1462 |
+
"grad_norm": 0.6883412198217931,
|
1463 |
+
"learning_rate": 1.7148536651049078e-05,
|
1464 |
+
"loss": 2.1097,
|
1465 |
+
"step": 200
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.6790540540540541,
|
1469 |
+
"grad_norm": 0.38108344540028705,
|
1470 |
+
"learning_rate": 1.692181754490571e-05,
|
1471 |
+
"loss": 2.1487,
|
1472 |
+
"step": 201
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.6824324324324325,
|
1476 |
+
"grad_norm": 0.46596636892914783,
|
1477 |
+
"learning_rate": 1.66964689668669e-05,
|
1478 |
+
"loss": 2.1226,
|
1479 |
+
"step": 202
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.6858108108108109,
|
1483 |
+
"grad_norm": 0.3884889567792045,
|
1484 |
+
"learning_rate": 1.6472520113494622e-05,
|
1485 |
+
"loss": 2.0384,
|
1486 |
+
"step": 203
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.6891891891891891,
|
1490 |
+
"grad_norm": 0.5294696992679853,
|
1491 |
+
"learning_rate": 1.6250000000000005e-05,
|
1492 |
+
"loss": 2.0854,
|
1493 |
+
"step": 204
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.6925675675675675,
|
1497 |
+
"grad_norm": 0.6679912280514742,
|
1498 |
+
"learning_rate": 1.6028937456484137e-05,
|
1499 |
+
"loss": 2.1521,
|
1500 |
+
"step": 205
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.6959459459459459,
|
1504 |
+
"grad_norm": 1.1501328678855647,
|
1505 |
+
"learning_rate": 1.580936112420275e-05,
|
1506 |
+
"loss": 1.9754,
|
1507 |
+
"step": 206
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.6993243243243243,
|
1511 |
+
"grad_norm": 0.4599912704355663,
|
1512 |
+
"learning_rate": 1.559129945185538e-05,
|
1513 |
+
"loss": 2.0103,
|
1514 |
+
"step": 207
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.7027027027027027,
|
1518 |
+
"grad_norm": 0.4723451173074553,
|
1519 |
+
"learning_rate": 1.5374780691899553e-05,
|
1520 |
+
"loss": 2.0294,
|
1521 |
+
"step": 208
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.706081081081081,
|
1525 |
+
"grad_norm": 0.39614835888065925,
|
1526 |
+
"learning_rate": 1.5159832896890324e-05,
|
1527 |
+
"loss": 2.0027,
|
1528 |
+
"step": 209
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.7094594594594594,
|
1532 |
+
"grad_norm": 0.5674089763099159,
|
1533 |
+
"learning_rate": 1.4946483915845752e-05,
|
1534 |
+
"loss": 2.0972,
|
1535 |
+
"step": 210
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.7094594594594594,
|
1539 |
+
"eval_loss": 2.005359411239624,
|
1540 |
+
"eval_runtime": 196.3936,
|
1541 |
+
"eval_samples_per_second": 0.255,
|
1542 |
+
"eval_steps_per_second": 0.066,
|
1543 |
+
"step": 210
|
1544 |
+
},
|
1545 |
+
{
|
1546 |
+
"epoch": 0.7128378378378378,
|
1547 |
+
"grad_norm": 0.405311292588835,
|
1548 |
+
"learning_rate": 1.473476139063869e-05,
|
1549 |
+
"loss": 2.1081,
|
1550 |
+
"step": 211
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.7162162162162162,
|
1554 |
+
"grad_norm": 0.49941841218777355,
|
1555 |
+
"learning_rate": 1.4524692752415493e-05,
|
1556 |
+
"loss": 1.992,
|
1557 |
+
"step": 212
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.7195945945945946,
|
1561 |
+
"grad_norm": 0.3870145887647159,
|
1562 |
+
"learning_rate": 1.4316305218041997e-05,
|
1563 |
+
"loss": 2.0732,
|
1564 |
+
"step": 213
|
1565 |
+
},
|
1566 |
+
{
|
1567 |
+
"epoch": 0.722972972972973,
|
1568 |
+
"grad_norm": 0.8010230321806846,
|
1569 |
+
"learning_rate": 1.4109625786577236e-05,
|
1570 |
+
"loss": 2.031,
|
1571 |
+
"step": 214
|
1572 |
+
},
|
1573 |
+
{
|
1574 |
+
"epoch": 0.7263513513513513,
|
1575 |
+
"grad_norm": 0.41451504848593906,
|
1576 |
+
"learning_rate": 1.3904681235775374e-05,
|
1577 |
+
"loss": 1.9604,
|
1578 |
+
"step": 215
|
1579 |
+
},
|
1580 |
+
{
|
1581 |
+
"epoch": 0.7297297297297297,
|
1582 |
+
"grad_norm": 0.42012094253734433,
|
1583 |
+
"learning_rate": 1.370149811861638e-05,
|
1584 |
+
"loss": 2.0378,
|
1585 |
+
"step": 216
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 0.7331081081081081,
|
1589 |
+
"grad_norm": 0.5698583105554919,
|
1590 |
+
"learning_rate": 1.3500102759865758e-05,
|
1591 |
+
"loss": 2.1111,
|
1592 |
+
"step": 217
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.7364864864864865,
|
1596 |
+
"grad_norm": 0.3926750948896524,
|
1597 |
+
"learning_rate": 1.330052125266382e-05,
|
1598 |
+
"loss": 2.1808,
|
1599 |
+
"step": 218
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"epoch": 0.7398648648648649,
|
1603 |
+
"grad_norm": 0.436664706138193,
|
1604 |
+
"learning_rate": 1.310277945514508e-05,
|
1605 |
+
"loss": 2.0413,
|
1606 |
+
"step": 219
|
1607 |
+
},
|
1608 |
+
{
|
1609 |
+
"epoch": 0.7432432432432432,
|
1610 |
+
"grad_norm": 0.5181403672040665,
|
1611 |
+
"learning_rate": 1.2906902987087994e-05,
|
1612 |
+
"loss": 2.0807,
|
1613 |
+
"step": 220
|
1614 |
+
},
|
1615 |
+
{
|
1616 |
+
"epoch": 0.7466216216216216,
|
1617 |
+
"grad_norm": 0.400974423390128,
|
1618 |
+
"learning_rate": 1.2712917226595616e-05,
|
1619 |
+
"loss": 2.0943,
|
1620 |
+
"step": 221
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.75,
|
1624 |
+
"grad_norm": 0.4460134300706243,
|
1625 |
+
"learning_rate": 1.2520847306807589e-05,
|
1626 |
+
"loss": 2.0802,
|
1627 |
+
"step": 222
|
1628 |
+
},
|
1629 |
+
{
|
1630 |
+
"epoch": 0.7533783783783784,
|
1631 |
+
"grad_norm": 0.4131195235199069,
|
1632 |
+
"learning_rate": 1.2330718112643792e-05,
|
1633 |
+
"loss": 2.0257,
|
1634 |
+
"step": 223
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.7567567567567568,
|
1638 |
+
"grad_norm": 0.6039834322797323,
|
1639 |
+
"learning_rate": 1.2142554277580288e-05,
|
1640 |
+
"loss": 2.1739,
|
1641 |
+
"step": 224
|
1642 |
+
},
|
1643 |
+
{
|
1644 |
+
"epoch": 0.7601351351351351,
|
1645 |
+
"grad_norm": 0.4403554972296534,
|
1646 |
+
"learning_rate": 1.1956380180457688e-05,
|
1647 |
+
"loss": 1.929,
|
1648 |
+
"step": 225
|
1649 |
+
},
|
1650 |
+
{
|
1651 |
+
"epoch": 0.7635135135135135,
|
1652 |
+
"grad_norm": 0.6136709559845319,
|
1653 |
+
"learning_rate": 1.1772219942322659e-05,
|
1654 |
+
"loss": 2.0956,
|
1655 |
+
"step": 226
|
1656 |
+
},
|
1657 |
+
{
|
1658 |
+
"epoch": 0.7668918918918919,
|
1659 |
+
"grad_norm": 0.3721043934343538,
|
1660 |
+
"learning_rate": 1.1590097423302684e-05,
|
1661 |
+
"loss": 2.0624,
|
1662 |
+
"step": 227
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.7702702702702703,
|
1666 |
+
"grad_norm": 0.3751617145534424,
|
1667 |
+
"learning_rate": 1.1410036219514762e-05,
|
1668 |
+
"loss": 2.1306,
|
1669 |
+
"step": 228
|
1670 |
+
},
|
1671 |
+
{
|
1672 |
+
"epoch": 0.7736486486486487,
|
1673 |
+
"grad_norm": 0.4615904753215304,
|
1674 |
+
"learning_rate": 1.1232059660008237e-05,
|
1675 |
+
"loss": 2.1549,
|
1676 |
+
"step": 229
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.777027027027027,
|
1680 |
+
"grad_norm": 0.34886057454784225,
|
1681 |
+
"learning_rate": 1.1056190803742208e-05,
|
1682 |
+
"loss": 1.8962,
|
1683 |
+
"step": 230
|
1684 |
+
},
|
1685 |
+
{
|
1686 |
+
"epoch": 0.7804054054054054,
|
1687 |
+
"grad_norm": 0.379971430732989,
|
1688 |
+
"learning_rate": 1.088245243659803e-05,
|
1689 |
+
"loss": 2.1084,
|
1690 |
+
"step": 231
|
1691 |
+
},
|
1692 |
+
{
|
1693 |
+
"epoch": 0.7837837837837838,
|
1694 |
+
"grad_norm": 0.4076749411088033,
|
1695 |
+
"learning_rate": 1.0710867068427078e-05,
|
1696 |
+
"loss": 2.0582,
|
1697 |
+
"step": 232
|
1698 |
+
},
|
1699 |
+
{
|
1700 |
+
"epoch": 0.7871621621621622,
|
1701 |
+
"grad_norm": 0.37680297146772307,
|
1702 |
+
"learning_rate": 1.0541456930134383e-05,
|
1703 |
+
"loss": 2.1541,
|
1704 |
+
"step": 233
|
1705 |
+
},
|
1706 |
+
{
|
1707 |
+
"epoch": 0.7905405405405406,
|
1708 |
+
"grad_norm": 0.3986805252065202,
|
1709 |
+
"learning_rate": 1.0374243970798297e-05,
|
1710 |
+
"loss": 2.0239,
|
1711 |
+
"step": 234
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 0.793918918918919,
|
1715 |
+
"grad_norm": 0.4216381351000177,
|
1716 |
+
"learning_rate": 1.0209249854826793e-05,
|
1717 |
+
"loss": 1.9384,
|
1718 |
+
"step": 235
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.7972972972972973,
|
1722 |
+
"grad_norm": 3.4841982335621053,
|
1723 |
+
"learning_rate": 1.0046495959150554e-05,
|
1724 |
+
"loss": 2.1648,
|
1725 |
+
"step": 236
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"epoch": 0.8006756756756757,
|
1729 |
+
"grad_norm": 0.550886438560183,
|
1730 |
+
"learning_rate": 9.88600337045333e-06,
|
1731 |
+
"loss": 2.0643,
|
1732 |
+
"step": 237
|
1733 |
+
},
|
1734 |
+
{
|
1735 |
+
"epoch": 0.8040540540540541,
|
1736 |
+
"grad_norm": 0.5312105646194669,
|
1737 |
+
"learning_rate": 9.727792882439938e-06,
|
1738 |
+
"loss": 2.1149,
|
1739 |
+
"step": 238
|
1740 |
+
},
|
1741 |
+
{
|
1742 |
+
"epoch": 0.8074324324324325,
|
1743 |
+
"grad_norm": 1.2275389743439304,
|
1744 |
+
"learning_rate": 9.57188499314215e-06,
|
1745 |
+
"loss": 2.2107,
|
1746 |
+
"step": 239
|
1747 |
+
},
|
1748 |
+
{
|
1749 |
+
"epoch": 0.8108108108108109,
|
1750 |
+
"grad_norm": 0.755407956454159,
|
1751 |
+
"learning_rate": 9.41829990226299e-06,
|
1752 |
+
"loss": 2.1761,
|
1753 |
+
"step": 240
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"epoch": 0.8108108108108109,
|
1757 |
+
"eval_loss": 2.0042636394500732,
|
1758 |
+
"eval_runtime": 195.0896,
|
1759 |
+
"eval_samples_per_second": 0.256,
|
1760 |
+
"eval_steps_per_second": 0.067,
|
1761 |
+
"step": 240
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 0.8141891891891891,
|
1765 |
+
"grad_norm": 0.48379829157730286,
|
1766 |
+
"learning_rate": 9.267057508559592e-06,
|
1767 |
+
"loss": 2.101,
|
1768 |
+
"step": 241
|
1769 |
+
},
|
1770 |
+
{
|
1771 |
+
"epoch": 0.8175675675675675,
|
1772 |
+
"grad_norm": 0.44013024339715,
|
1773 |
+
"learning_rate": 9.118177407265056e-06,
|
1774 |
+
"loss": 2.1196,
|
1775 |
+
"step": 242
|
1776 |
+
},
|
1777 |
+
{
|
1778 |
+
"epoch": 0.8209459459459459,
|
1779 |
+
"grad_norm": 0.561381768462023,
|
1780 |
+
"learning_rate": 8.971678887549712e-06,
|
1781 |
+
"loss": 2.149,
|
1782 |
+
"step": 243
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 0.8243243243243243,
|
1786 |
+
"grad_norm": 0.37732815129251784,
|
1787 |
+
"learning_rate": 8.827580930021936e-06,
|
1788 |
+
"loss": 2.1098,
|
1789 |
+
"step": 244
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 0.8277027027027027,
|
1793 |
+
"grad_norm": 0.6499115709600214,
|
1794 |
+
"learning_rate": 8.685902204269012e-06,
|
1795 |
+
"loss": 1.9987,
|
1796 |
+
"step": 245
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.831081081081081,
|
1800 |
+
"grad_norm": 0.3777685916732647,
|
1801 |
+
"learning_rate": 8.546661066438243e-06,
|
1802 |
+
"loss": 2.1232,
|
1803 |
+
"step": 246
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 0.8344594594594594,
|
1807 |
+
"grad_norm": 0.997691102079538,
|
1808 |
+
"learning_rate": 8.409875556858728e-06,
|
1809 |
+
"loss": 2.2468,
|
1810 |
+
"step": 247
|
1811 |
+
},
|
1812 |
+
{
|
1813 |
+
"epoch": 0.8378378378378378,
|
1814 |
+
"grad_norm": 1.0313423837079596,
|
1815 |
+
"learning_rate": 8.275563397704008e-06,
|
1816 |
+
"loss": 2.0612,
|
1817 |
+
"step": 248
|
1818 |
+
},
|
1819 |
+
{
|
1820 |
+
"epoch": 0.8412162162162162,
|
1821 |
+
"grad_norm": 0.9545397247064048,
|
1822 |
+
"learning_rate": 8.143741990695947e-06,
|
1823 |
+
"loss": 2.0295,
|
1824 |
+
"step": 249
|
1825 |
+
},
|
1826 |
+
{
|
1827 |
+
"epoch": 0.8445945945945946,
|
1828 |
+
"grad_norm": 0.48112662217454943,
|
1829 |
+
"learning_rate": 8.01442841485013e-06,
|
1830 |
+
"loss": 2.016,
|
1831 |
+
"step": 250
|
1832 |
+
},
|
1833 |
+
{
|
1834 |
+
"epoch": 0.847972972972973,
|
1835 |
+
"grad_norm": 0.4525753292819526,
|
1836 |
+
"learning_rate": 7.887639424263095e-06,
|
1837 |
+
"loss": 2.1112,
|
1838 |
+
"step": 251
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.8513513513513513,
|
1842 |
+
"grad_norm": 0.373269871593188,
|
1843 |
+
"learning_rate": 7.76339144594163e-06,
|
1844 |
+
"loss": 2.1332,
|
1845 |
+
"step": 252
|
1846 |
+
},
|
1847 |
+
{
|
1848 |
+
"epoch": 0.8547297297297297,
|
1849 |
+
"grad_norm": 0.4714615102710501,
|
1850 |
+
"learning_rate": 7.64170057767445e-06,
|
1851 |
+
"loss": 2.1127,
|
1852 |
+
"step": 253
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 0.8581081081081081,
|
1856 |
+
"grad_norm": 0.41117656642398737,
|
1857 |
+
"learning_rate": 7.522582585946558e-06,
|
1858 |
+
"loss": 2.0966,
|
1859 |
+
"step": 254
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"epoch": 0.8614864864864865,
|
1863 |
+
"grad_norm": 0.39133852746779035,
|
1864 |
+
"learning_rate": 7.406052903896504e-06,
|
1865 |
+
"loss": 2.1377,
|
1866 |
+
"step": 255
|
1867 |
+
},
|
1868 |
+
{
|
1869 |
+
"epoch": 0.8648648648648649,
|
1870 |
+
"grad_norm": 0.4976521052133734,
|
1871 |
+
"learning_rate": 7.292126629316841e-06,
|
1872 |
+
"loss": 2.1264,
|
1873 |
+
"step": 256
|
1874 |
+
},
|
1875 |
+
{
|
1876 |
+
"epoch": 0.8682432432432432,
|
1877 |
+
"grad_norm": 0.5748609387660506,
|
1878 |
+
"learning_rate": 7.1808185226980144e-06,
|
1879 |
+
"loss": 2.078,
|
1880 |
+
"step": 257
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.8716216216216216,
|
1884 |
+
"grad_norm": 0.6237308439362074,
|
1885 |
+
"learning_rate": 7.072143005315997e-06,
|
1886 |
+
"loss": 2.1125,
|
1887 |
+
"step": 258
|
1888 |
+
},
|
1889 |
+
{
|
1890 |
+
"epoch": 0.875,
|
1891 |
+
"grad_norm": 0.45517735653366964,
|
1892 |
+
"learning_rate": 6.966114157363821e-06,
|
1893 |
+
"loss": 2.1685,
|
1894 |
+
"step": 259
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 0.8783783783783784,
|
1898 |
+
"grad_norm": 0.37602443499611526,
|
1899 |
+
"learning_rate": 6.862745716127312e-06,
|
1900 |
+
"loss": 2.1349,
|
1901 |
+
"step": 260
|
1902 |
+
},
|
1903 |
+
{
|
1904 |
+
"epoch": 0.8817567567567568,
|
1905 |
+
"grad_norm": 0.43834187328579305,
|
1906 |
+
"learning_rate": 6.762051074205289e-06,
|
1907 |
+
"loss": 2.0764,
|
1908 |
+
"step": 261
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 0.8851351351351351,
|
1912 |
+
"grad_norm": 0.4170412679000652,
|
1913 |
+
"learning_rate": 6.6640432777743815e-06,
|
1914 |
+
"loss": 2.0925,
|
1915 |
+
"step": 262
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 0.8885135135135135,
|
1919 |
+
"grad_norm": 0.410513816061216,
|
1920 |
+
"learning_rate": 6.568735024898755e-06,
|
1921 |
+
"loss": 2.103,
|
1922 |
+
"step": 263
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.8918918918918919,
|
1926 |
+
"grad_norm": 0.3898098438793997,
|
1927 |
+
"learning_rate": 6.476138663884902e-06,
|
1928 |
+
"loss": 2.1138,
|
1929 |
+
"step": 264
|
1930 |
+
},
|
1931 |
+
{
|
1932 |
+
"epoch": 0.8952702702702703,
|
1933 |
+
"grad_norm": 0.3975585157411543,
|
1934 |
+
"learning_rate": 6.386266191681797e-06,
|
1935 |
+
"loss": 2.0935,
|
1936 |
+
"step": 265
|
1937 |
+
},
|
1938 |
+
{
|
1939 |
+
"epoch": 0.8986486486486487,
|
1940 |
+
"grad_norm": 0.35048570379733146,
|
1941 |
+
"learning_rate": 6.299129252326541e-06,
|
1942 |
+
"loss": 2.0116,
|
1943 |
+
"step": 266
|
1944 |
+
},
|
1945 |
+
{
|
1946 |
+
"epoch": 0.902027027027027,
|
1947 |
+
"grad_norm": 0.3919603572459853,
|
1948 |
+
"learning_rate": 6.214739135435742e-06,
|
1949 |
+
"loss": 2.0657,
|
1950 |
+
"step": 267
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"epoch": 0.9054054054054054,
|
1954 |
+
"grad_norm": 0.557862525874976,
|
1955 |
+
"learning_rate": 6.133106774742819e-06,
|
1956 |
+
"loss": 2.0765,
|
1957 |
+
"step": 268
|
1958 |
+
},
|
1959 |
+
{
|
1960 |
+
"epoch": 0.9087837837837838,
|
1961 |
+
"grad_norm": 0.39493324357545007,
|
1962 |
+
"learning_rate": 6.054242746681382e-06,
|
1963 |
+
"loss": 2.1249,
|
1964 |
+
"step": 269
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.9121621621621622,
|
1968 |
+
"grad_norm": 1.9963252009359573,
|
1969 |
+
"learning_rate": 5.9781572690149684e-06,
|
1970 |
+
"loss": 2.1288,
|
1971 |
+
"step": 270
|
1972 |
+
},
|
1973 |
+
{
|
1974 |
+
"epoch": 0.9121621621621622,
|
1975 |
+
"eval_loss": 2.0036399364471436,
|
1976 |
+
"eval_runtime": 195.7956,
|
1977 |
+
"eval_samples_per_second": 0.255,
|
1978 |
+
"eval_steps_per_second": 0.066,
|
1979 |
+
"step": 270
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 0.9155405405405406,
|
1983 |
+
"grad_norm": 0.5120749568149566,
|
1984 |
+
"learning_rate": 5.904860199513184e-06,
|
1985 |
+
"loss": 2.0928,
|
1986 |
+
"step": 271
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 0.918918918918919,
|
1990 |
+
"grad_norm": 0.43131777610423944,
|
1991 |
+
"learning_rate": 5.834361034674521e-06,
|
1992 |
+
"loss": 2.0637,
|
1993 |
+
"step": 272
|
1994 |
+
},
|
1995 |
+
{
|
1996 |
+
"epoch": 0.9222972972972973,
|
1997 |
+
"grad_norm": 0.35373523391766476,
|
1998 |
+
"learning_rate": 5.766668908495966e-06,
|
1999 |
+
"loss": 2.0978,
|
2000 |
+
"step": 273
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.9256756756756757,
|
2004 |
+
"grad_norm": 0.5253182101700391,
|
2005 |
+
"learning_rate": 5.701792591289609e-06,
|
2006 |
+
"loss": 1.9415,
|
2007 |
+
"step": 274
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"epoch": 0.9290540540540541,
|
2011 |
+
"grad_norm": 0.37847718648888473,
|
2012 |
+
"learning_rate": 5.6397404885463175e-06,
|
2013 |
+
"loss": 2.0668,
|
2014 |
+
"step": 275
|
2015 |
+
},
|
2016 |
+
{
|
2017 |
+
"epoch": 0.9324324324324325,
|
2018 |
+
"grad_norm": 0.40314006462162916,
|
2019 |
+
"learning_rate": 5.580520639846723e-06,
|
2020 |
+
"loss": 2.1415,
|
2021 |
+
"step": 276
|
2022 |
+
},
|
2023 |
+
{
|
2024 |
+
"epoch": 0.9358108108108109,
|
2025 |
+
"grad_norm": 0.7112783095355424,
|
2026 |
+
"learning_rate": 5.524140717819588e-06,
|
2027 |
+
"loss": 2.0203,
|
2028 |
+
"step": 277
|
2029 |
+
},
|
2030 |
+
{
|
2031 |
+
"epoch": 0.9391891891891891,
|
2032 |
+
"grad_norm": 0.3708045804577933,
|
2033 |
+
"learning_rate": 5.470608027147735e-06,
|
2034 |
+
"loss": 2.0389,
|
2035 |
+
"step": 278
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"epoch": 0.9425675675675675,
|
2039 |
+
"grad_norm": 0.41978840812377416,
|
2040 |
+
"learning_rate": 5.4199295036216396e-06,
|
2041 |
+
"loss": 2.058,
|
2042 |
+
"step": 279
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.9459459459459459,
|
2046 |
+
"grad_norm": 0.36678087910383106,
|
2047 |
+
"learning_rate": 5.372111713240805e-06,
|
2048 |
+
"loss": 2.0516,
|
2049 |
+
"step": 280
|
2050 |
+
},
|
2051 |
+
{
|
2052 |
+
"epoch": 0.9493243243243243,
|
2053 |
+
"grad_norm": 0.3872031527878056,
|
2054 |
+
"learning_rate": 5.3271608513630705e-06,
|
2055 |
+
"loss": 2.0408,
|
2056 |
+
"step": 281
|
2057 |
+
},
|
2058 |
+
{
|
2059 |
+
"epoch": 0.9527027027027027,
|
2060 |
+
"grad_norm": 0.34292484653055205,
|
2061 |
+
"learning_rate": 5.285082741901934e-06,
|
2062 |
+
"loss": 2.1431,
|
2063 |
+
"step": 282
|
2064 |
+
},
|
2065 |
+
{
|
2066 |
+
"epoch": 0.956081081081081,
|
2067 |
+
"grad_norm": 0.3956805273525828,
|
2068 |
+
"learning_rate": 5.245882836571982e-06,
|
2069 |
+
"loss": 2.0295,
|
2070 |
+
"step": 283
|
2071 |
+
},
|
2072 |
+
{
|
2073 |
+
"epoch": 0.9594594594594594,
|
2074 |
+
"grad_norm": 0.4535838267215395,
|
2075 |
+
"learning_rate": 5.209566214182558e-06,
|
2076 |
+
"loss": 2.0857,
|
2077 |
+
"step": 284
|
2078 |
+
},
|
2079 |
+
{
|
2080 |
+
"epoch": 0.9628378378378378,
|
2081 |
+
"grad_norm": 0.3550925640606362,
|
2082 |
+
"learning_rate": 5.176137579979761e-06,
|
2083 |
+
"loss": 2.1073,
|
2084 |
+
"step": 285
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.9662162162162162,
|
2088 |
+
"grad_norm": 0.4137692684011193,
|
2089 |
+
"learning_rate": 5.1456012650368e-06,
|
2090 |
+
"loss": 2.0959,
|
2091 |
+
"step": 286
|
2092 |
+
},
|
2093 |
+
{
|
2094 |
+
"epoch": 0.9695945945945946,
|
2095 |
+
"grad_norm": 0.428088826724393,
|
2096 |
+
"learning_rate": 5.117961225692866e-06,
|
2097 |
+
"loss": 2.0772,
|
2098 |
+
"step": 287
|
2099 |
+
},
|
2100 |
+
{
|
2101 |
+
"epoch": 0.972972972972973,
|
2102 |
+
"grad_norm": 0.44380038516311177,
|
2103 |
+
"learning_rate": 5.093221043040547e-06,
|
2104 |
+
"loss": 2.1148,
|
2105 |
+
"step": 288
|
2106 |
+
},
|
2107 |
+
{
|
2108 |
+
"epoch": 0.9763513513513513,
|
2109 |
+
"grad_norm": 0.4304760622149439,
|
2110 |
+
"learning_rate": 5.071383922461841e-06,
|
2111 |
+
"loss": 2.1174,
|
2112 |
+
"step": 289
|
2113 |
+
},
|
2114 |
+
{
|
2115 |
+
"epoch": 0.9797297297297297,
|
2116 |
+
"grad_norm": 0.3887153913842021,
|
2117 |
+
"learning_rate": 5.052452693212867e-06,
|
2118 |
+
"loss": 2.1782,
|
2119 |
+
"step": 290
|
2120 |
+
},
|
2121 |
+
{
|
2122 |
+
"epoch": 0.9831081081081081,
|
2123 |
+
"grad_norm": 0.4408096502071823,
|
2124 |
+
"learning_rate": 5.036429808057314e-06,
|
2125 |
+
"loss": 1.9739,
|
2126 |
+
"step": 291
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.9864864864864865,
|
2130 |
+
"grad_norm": 0.38739812414286,
|
2131 |
+
"learning_rate": 5.023317342948631e-06,
|
2132 |
+
"loss": 2.0595,
|
2133 |
+
"step": 292
|
2134 |
+
},
|
2135 |
+
{
|
2136 |
+
"epoch": 0.9898648648648649,
|
2137 |
+
"grad_norm": 0.40388722876679783,
|
2138 |
+
"learning_rate": 5.013116996761085e-06,
|
2139 |
+
"loss": 1.9943,
|
2140 |
+
"step": 293
|
2141 |
+
},
|
2142 |
+
{
|
2143 |
+
"epoch": 0.9932432432432432,
|
2144 |
+
"grad_norm": 1.380480700103222,
|
2145 |
+
"learning_rate": 5.005830091069644e-06,
|
2146 |
+
"loss": 2.1601,
|
2147 |
+
"step": 294
|
2148 |
+
},
|
2149 |
+
{
|
2150 |
+
"epoch": 0.9966216216216216,
|
2151 |
+
"grad_norm": 0.5043028943315486,
|
2152 |
+
"learning_rate": 5.001457569978752e-06,
|
2153 |
+
"loss": 2.1212,
|
2154 |
+
"step": 295
|
2155 |
+
},
|
2156 |
+
{
|
2157 |
+
"epoch": 1.0,
|
2158 |
+
"grad_norm": 0.41095001521536584,
|
2159 |
+
"learning_rate": 5e-06,
|
2160 |
+
"loss": 2.1448,
|
2161 |
+
"step": 296
|
2162 |
+
}
|
2163 |
+
],
|
2164 |
+
"logging_steps": 1,
|
2165 |
+
"max_steps": 296,
|
2166 |
+
"num_input_tokens_seen": 0,
|
2167 |
+
"num_train_epochs": 1,
|
2168 |
+
"save_steps": 60,
|
2169 |
+
"stateful_callbacks": {
|
2170 |
+
"TrainerControl": {
|
2171 |
+
"args": {
|
2172 |
+
"should_epoch_stop": false,
|
2173 |
+
"should_evaluate": false,
|
2174 |
+
"should_log": false,
|
2175 |
+
"should_save": true,
|
2176 |
+
"should_training_stop": true
|
2177 |
+
},
|
2178 |
+
"attributes": {}
|
2179 |
+
}
|
2180 |
+
},
|
2181 |
+
"total_flos": 507967929581568.0,
|
2182 |
+
"train_batch_size": 1,
|
2183 |
+
"trial_name": null,
|
2184 |
+
"trial_params": null
|
2185 |
+
}
|
checkpoint-296/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f751e98c8537f36dd5103f084d3b16fe579ab9d618ac216bfedc4e2f22ecfad6
|
3 |
+
size 11640
|
checkpoint-296/zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|