--- library_name: peft license: apache-2.0 base_model: arcee-ai/Virtuoso-Small tags: - axolotl - generated_from_trainer datasets: - ToastyPigeon/some-rp model-index: - name: qwen-rp-test-h-qlora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml # git clone https://github.com/axolotl-ai-cloud/axolotl # cd axolotl # git checkout 844331005c1ef45430ff26b9f42f757dce6ee66a # pip3 install packaging ninja huggingface_hub[cli] # pip3 install -e '.[flash-attn,deepspeed]' # huggingface-cli login --token $hf_key && wandb login $wandb_key # python -m axolotl.cli.preprocess nemo-rp-test-human.yml # accelerate launch -m axolotl.cli.train qwen-rp-test-human.yml # python -m axolotl.cli.merge_lora nemo-rp-test-human.yml # huggingface-cli upload Columbidae/nemo-rp-test-human train-workspace/merged . --exclude "*.md" # sleep 10h; runpodctl stop pod $RUNPOD_POD_ID & # git clone https://github.com/axolotl-ai-cloud/axolotl && cd axolotl && pip3 install packaging ninja huggingface_hub[cli] && pip3 install -e '.[flash-attn,deepspeed]' && cd .. # Model base_model: arcee-ai/Virtuoso-Small model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false bf16: true fp16: tf32: false flash_attention: true special_tokens: # Output output_dir: ./train-workspace hub_model_id: ToastyPigeon/qwen-rp-test-h-qlora hub_strategy: "checkpoint" auto_resume_from_checkpoint: true #resume_from_checkpoint: ./train-workspace/checkpoint-304 saves_per_epoch: 10 save_total_limit: 3 # Data sequence_len: 8192 # fits min_sample_len: 128 chat_template: chatml dataset_prepared_path: last_run_prepared datasets: - path: ToastyPigeon/some-rp type: chat_template field_messages: conversations message_field_role: from message_field_content: value warmup_steps: 20 shuffle_merged_datasets: true sample_packing: true pad_to_sequence_len: true # Batching num_epochs: 1 gradient_accumulation_steps: 1 micro_batch_size: 1 eval_batch_size: 1 # Evaluation val_set_size: 80 evals_per_epoch: 10 eval_table_size: eval_max_new_tokens: 256 eval_sample_packing: false save_safetensors: true # WandB wandb_project: Qwen-Rp-Test #wandb_entity: gradient_checkpointing: 'unsloth' gradient_checkpointing_kwargs: use_reentrant: false unsloth_cross_entropy_loss: true #unsloth_lora_mlp: true #unsloth_lora_qkv: true #unsloth_lora_o: true # LoRA adapter: qlora lora_r: 64 lora_alpha: 128 lora_dropout: 0.125 lora_target_linear: true lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj lora_modules_to_save: #peft_use_rslora: true #loraplus_lr_ratio: 8 # Optimizer optimizer: paged_ademamix_8bit lr_scheduler: cosine learning_rate: 1e-4 cosine_min_lr_ratio: 0.1 weight_decay: 0.1 max_grad_norm: 1.0 # Misc train_on_inputs: false group_by_length: false early_stopping_patience: local_rank: logging_steps: 1 xformers_attention: debug: deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json # previously blank fsdp: fsdp_config: plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_layer_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true gc_steps: 10 # Debug config debug: true seed: 69 ```

# qwen-rp-test-h-qlora This model is a fine-tuned version of [arcee-ai/Virtuoso-Small](https://huggingface.co/arcee-ai/Virtuoso-Small) on the ToastyPigeon/some-rp dataset. It achieves the following results on the evaluation set: - Loss: 2.3971 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 69 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Use OptimizerNames.PAGED_ADEMAMIX_8BIT and the args are: No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4903 | 0.0026 | 1 | 2.5546 | | 2.2882 | 0.1016 | 39 | 2.4302 | | 2.3752 | 0.2031 | 78 | 2.4171 | | 2.3249 | 0.3047 | 117 | 2.4119 | | 2.2504 | 0.4062 | 156 | 2.4081 | | 2.3905 | 0.5078 | 195 | 2.4030 | | 2.3354 | 0.6094 | 234 | 2.4018 | | 2.5473 | 0.7109 | 273 | 2.3996 | | 2.4123 | 0.8125 | 312 | 2.3982 | | 2.2878 | 0.9141 | 351 | 2.3971 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0