File size: 15,574 Bytes
119e2b6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7efea5416440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efea5418380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685554914295666577, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAADvK6Pgy4wzzZchM/DvK6Pgy4wzzZchM/DvK6Pgy4wzzZchM/DvK6Pgy4wzzZchM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA98LYv8yeaT2McTY/dVFfvxPIFr811ns+Iav1vgD6Sb9EZNq/3Tz3PtySm7+YBxa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAO8ro+DLjDPNlyEz8cdoC7nzgPu/IXCjwO8ro+DLjDPNlyEz8cdoC7nzgPu/IXCjwO8ro+DLjDPNlyEz8cdoC7nzgPu/IXCjwO8ro+DLjDPNlyEz8cdoC7nzgPu/IXCjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.36512798 0.02389147 0.5759712 ]\n [0.36512798 0.02389147 0.5759712 ]\n [0.36512798 0.02389147 0.5759712 ]\n [0.36512798 0.02389147 0.5759712 ]]", "desired_goal": "[[-1.6934499   0.05703621  0.7126701 ]\n [-0.8723367  -0.5889904   0.24593432]\n [-0.47982123 -0.78897095 -1.7061849 ]\n [ 0.48288622 -1.2154193  -0.5860534 ]]", "observation": "[[ 0.36512798  0.02389147  0.5759712  -0.00392033 -0.00218538  0.00842856]\n [ 0.36512798  0.02389147  0.5759712  -0.00392033 -0.00218538  0.00842856]\n [ 0.36512798  0.02389147  0.5759712  -0.00392033 -0.00218538  0.00842856]\n [ 0.36512798  0.02389147  0.5759712  -0.00392033 -0.00218538  0.00842856]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA5sqOvXSaR71N2JU+i+aRvQIa972u3049tZF2vQFqGL7Bi4w9ZjfWvUggijxHyZA8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.06972294 -0.04873128  0.29266587]\n [-0.07124051 -0.12065507  0.05050629]\n [-0.06019755 -0.14884187  0.06862593]\n [-0.10459785  0.0168611   0.0176741 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvM/x0eIMA8CUhpRSlIwBbJRLMowBdJRHQKmYS9X9zfd1fZQoaAZoCWgPQwgx0ova/er3v5SGlFKUaBVLMmgWR0Cpl8yF49owdX2UKGgGaAloD0MIEYqtoGmJ/7+UhpRSlGgVSzJoFkdAqZdVhd+ocnV9lChoBmgJaA9DCFDhCFIplgbAlIaUUpRoFUsyaBZHQKmW5thuwX91fZQoaAZoCWgPQwiDTZ1Hxb8CwJSGlFKUaBVLMmgWR0CpmVXm3fALdX2UKGgGaAloD0MI+aBns+ozBMCUhpRSlGgVSzJoFkdAqZjWXXyy2XV9lChoBmgJaA9DCHnnUIaq2ATAlIaUUpRoFUsyaBZHQKmYXx1gYxd1fZQoaAZoCWgPQwjJdr6fGi//v5SGlFKUaBVLMmgWR0Cpl/B/qgRLdX2UKGgGaAloD0MILbMIxVYQ/r+UhpRSlGgVSzJoFkdAqZpPJvHcUXV9lChoBmgJaA9DCGAgCJChY/+/lIaUUpRoFUsyaBZHQKmZz7aZhKF1fZQoaAZoCWgPQwhmvK302mzzv5SGlFKUaBVLMmgWR0CpmVhBZ6lddX2UKGgGaAloD0MIWTMyyF2E+r+UhpRSlGgVSzJoFkdAqZjpSNwR5HV9lChoBmgJaA9DCAJjfQOT2/2/lIaUUpRoFUsyaBZHQKmbVGmUGFB1fZQoaAZoCWgPQwiEglK0ci8AwJSGlFKUaBVLMmgWR0CpmtUNKAavdX2UKGgGaAloD0MIBVPNrKVAAcCUhpRSlGgVSzJoFkdAqZpd72L5ynV9lChoBmgJaA9DCAHBHD1+r/W/lIaUUpRoFUsyaBZHQKmZ7xkNF0B1fZQoaAZoCWgPQwguBDkoYSYGwJSGlFKUaBVLMmgWR0CpnEgE2YOUdX2UKGgGaAloD0MIXp7OFaWE/r+UhpRSlGgVSzJoFkdAqZvIe7tiQXV9lChoBmgJaA9DCGajc36KQwXAlIaUUpRoFUsyaBZHQKmbUSDh99d1fZQoaAZoCWgPQwgG9S1zuiz6v5SGlFKUaBVLMmgWR0CpmuIzvZyudX2UKGgGaAloD0MIYMyWrIqwB8CUhpRSlGgVSzJoFkdAqZ1OQlruY3V9lChoBmgJaA9DCAPv5NNjW/q/lIaUUpRoFUsyaBZHQKmczq1w5vN1fZQoaAZoCWgPQwhRMjm1Mwz5v5SGlFKUaBVLMmgWR0CpnFc5jpcHdX2UKGgGaAloD0MIZ7rXSX05AsCUhpRSlGgVSzJoFkdAqZvoTK1XvHV9lChoBmgJaA9DCJW1TfG4aAPAlIaUUpRoFUsyaBZHQKmeR1dxAB11fZQoaAZoCWgPQwi/0Y4bfjf0v5SGlFKUaBVLMmgWR0CpnceyRjjJdX2UKGgGaAloD0MIahK8IY1KB8CUhpRSlGgVSzJoFkdAqZ1QYvWYnnV9lChoBmgJaA9DCGk50ENtmwLAlIaUUpRoFUsyaBZHQKmc4dBBzFN1fZQoaAZoCWgPQwjHuOLiqFwBwJSGlFKUaBVLMmgWR0Cpn05NO/L1dX2UKGgGaAloD0MIpDMw8rImBcCUhpRSlGgVSzJoFkdAqZ7Or0aqCHV9lChoBmgJaA9DCKBQTx+BvwrAlIaUUpRoFUsyaBZHQKmeV4bCJoF1fZQoaAZoCWgPQwhN9WT+0ff6v5SGlFKUaBVLMmgWR0Cpneia7VawdX2UKGgGaAloD0MIhCnKpfHLAsCUhpRSlGgVSzJoFkdAqaBCd+Xqq3V9lChoBmgJaA9DCKZHUz2Z3wPAlIaUUpRoFUsyaBZHQKmfwsfaHsV1fZQoaAZoCWgPQwiFC3kEN9L+v5SGlFKUaBVLMmgWR0Cpn0taY/mldX2UKGgGaAloD0MI0sWmlUIg/7+UhpRSlGgVSzJoFkdAqZ7cz9CNTHV9lChoBmgJaA9DCCNJEK6AQv+/lIaUUpRoFUsyaBZHQKmhRG8VYZF1fZQoaAZoCWgPQwgf963WiWsCwJSGlFKUaBVLMmgWR0CpoMTr/sE8dX2UKGgGaAloD0MI+DJRhNTtAcCUhpRSlGgVSzJoFkdAqaBNfb9IgHV9lChoBmgJaA9DCJwU5j3ONP2/lIaUUpRoFUsyaBZHQKmf3pNbkfd1fZQoaAZoCWgPQwhVFK+ytikIwJSGlFKUaBVLMmgWR0Cpoj2QfZEldX2UKGgGaAloD0MIzox+NJyyBcCUhpRSlGgVSzJoFkdAqaG+CiAUcnV9lChoBmgJaA9DCIGzlCwnIfu/lIaUUpRoFUsyaBZHQKmhRpTMqz91fZQoaAZoCWgPQwjDSC9q9ysIwJSGlFKUaBVLMmgWR0CpoNeoUBXCdX2UKGgGaAloD0MIxTnq6Lia9r+UhpRSlGgVSzJoFkdAqaNDwlSjxnV9lChoBmgJaA9DCPgb7bjht/+/lIaUUpRoFUsyaBZHQKmixF6zE751fZQoaAZoCWgPQwjXFTPC2wMBwJSGlFKUaBVLMmgWR0CpokzyBkI5dX2UKGgGaAloD0MIgLqBAu8k/r+UhpRSlGgVSzJoFkdAqaHeFDfFaXV9lChoBmgJaA9DCIFfI0kQrgnAlIaUUpRoFUsyaBZHQKmkOIw/PgN1fZQoaAZoCWgPQwiZ9WIoJ7oEwJSGlFKUaBVLMmgWR0Cpo7jhky1vdX2UKGgGaAloD0MIz4b8M4N4+r+UhpRSlGgVSzJoFkdAqaNBcAzYVnV9lChoBmgJaA9DCBaInpRJ7QXAlIaUUpRoFUsyaBZHQKmi0oDPnjh1fZQoaAZoCWgPQwjG3osv2qP8v5SGlFKUaBVLMmgWR0CppTnJcPe6dX2UKGgGaAloD0MI0Qg2rn/XBsCUhpRSlGgVSzJoFkdAqaS6Np/PPnV9lChoBmgJaA9DCJhtp60RQQXAlIaUUpRoFUsyaBZHQKmkQs/6frd1fZQoaAZoCWgPQwjSiQRTzez5v5SGlFKUaBVLMmgWR0Cpo9PmxMWXdX2UKGgGaAloD0MIU5W2uMan/7+UhpRSlGgVSzJoFkdAqaa6/Efkm3V9lChoBmgJaA9DCP0wQni0cf2/lIaUUpRoFUsyaBZHQKmmPMkhRqJ1fZQoaAZoCWgPQwhA+iZNgyIJwJSGlFKUaBVLMmgWR0CppcZMtbs4dX2UKGgGaAloD0MIGR9mL9tO/b+UhpRSlGgVSzJoFkdAqaVYaHbh33V9lChoBmgJaA9DCAQdrWpJR/2/lIaUUpRoFUsyaBZHQKmoaz7di2F1fZQoaAZoCWgPQwiiJY+n5YcEwJSGlFKUaBVLMmgWR0Cpp+x3mmtRdX2UKGgGaAloD0MIBfuvc9NGAsCUhpRSlGgVSzJoFkdAqad10Rvm5nV9lChoBmgJaA9DCE3XE10XngHAlIaUUpRoFUsyaBZHQKmnB+x4Y791fZQoaAZoCWgPQwhcyY6NQNwJwJSGlFKUaBVLMmgWR0CpqggzP8htdX2UKGgGaAloD0MIRYE+kSdJ/r+UhpRSlGgVSzJoFkdAqamJV0cOsnV9lChoBmgJaA9DCD4kfO9vsAXAlIaUUpRoFUsyaBZHQKmpEqkM1CR1fZQoaAZoCWgPQwgw1cxaCoj7v5SGlFKUaBVLMmgWR0CpqKU9yLhrdX2UKGgGaAloD0MIsKw0KQU9AcCUhpRSlGgVSzJoFkdAqavGgFotc3V9lChoBmgJaA9DCL4xBADHPgLAlIaUUpRoFUsyaBZHQKmrR/0dzXB1fZQoaAZoCWgPQwhUO8PUlhoLwJSGlFKUaBVLMmgWR0CpqtGuLaVVdX2UKGgGaAloD0MIiX0CKEZW97+UhpRSlGgVSzJoFkdAqapjgwXZXnV9lChoBmgJaA9DCIielEkNrQXAlIaUUpRoFUsyaBZHQKmtiFeOXE91fZQoaAZoCWgPQwhl3qrrUI0FwJSGlFKUaBVLMmgWR0CprQlwDNhWdX2UKGgGaAloD0MIJET5ghYSA8CUhpRSlGgVSzJoFkdAqayS/ub7THV9lChoBmgJaA9DCDDYDdsWpQDAlIaUUpRoFUsyaBZHQKmsJPppvgp1fZQoaAZoCWgPQwi6vDlcq50FwJSGlFKUaBVLMmgWR0Cpr1BeokzHdX2UKGgGaAloD0MIrFj8prByAMCUhpRSlGgVSzJoFkdAqa7RgZ0jknV9lChoBmgJaA9DCL2MYrmlVfq/lIaUUpRoFUsyaBZHQKmuWxpL26F1fZQoaAZoCWgPQwj7AnrhzuUAwJSGlFKUaBVLMmgWR0Cpre10knkUdX2UKGgGaAloD0MIj+TyH9Lv87+UhpRSlGgVSzJoFkdAqbEXFWGRFXV9lChoBmgJaA9DCPMhqBq9Wva/lIaUUpRoFUsyaBZHQKmwmEvkBCF1fZQoaAZoCWgPQwit3uF2aDgDwJSGlFKUaBVLMmgWR0CpsCHBDXvqdX2UKGgGaAloD0MIWMUbmUf+AsCUhpRSlGgVSzJoFkdAqa+zyYoiLXV9lChoBmgJaA9DCK7VHvZCgQHAlIaUUpRoFUsyaBZHQKmy1Pu5SWJ1fZQoaAZoCWgPQwhkzF1LyCcDwJSGlFKUaBVLMmgWR0CpslVIRRMwdX2UKGgGaAloD0MI5ljeVQ9Y/7+UhpRSlGgVSzJoFkdAqbHd1fVqe3V9lChoBmgJaA9DCDwx68VQDv2/lIaUUpRoFUsyaBZHQKmxbvtMPBl1fZQoaAZoCWgPQwjDEaRS7OgCwJSGlFKUaBVLMmgWR0Cps9yCWeH0dX2UKGgGaAloD0MIvR3htOAFAMCUhpRSlGgVSzJoFkdAqbNc7fYSQHV9lChoBmgJaA9DCMKlY84ztvi/lIaUUpRoFUsyaBZHQKmy5YL9deJ1fZQoaAZoCWgPQwgBv0aSIHwBwJSGlFKUaBVLMmgWR0Cpsna+WWyDdX2UKGgGaAloD0MI0EcZcQFo9L+UhpRSlGgVSzJoFkdAqbTafL9uP3V9lChoBmgJaA9DCOv+sRAdgve/lIaUUpRoFUsyaBZHQKm0WtzS1E51fZQoaAZoCWgPQwj4UnjQ7LoFwJSGlFKUaBVLMmgWR0Cps+OEM9bHdX2UKGgGaAloD0MI8u8zLhzI97+UhpRSlGgVSzJoFkdAqbN0r08NhHV9lChoBmgJaA9DCEzjF15JMva/lIaUUpRoFUsyaBZHQKm1231BdD91fZQoaAZoCWgPQwivCtRi8LD1v5SGlFKUaBVLMmgWR0CptVvgNwzddX2UKGgGaAloD0MIyJQPQdVoBsCUhpRSlGgVSzJoFkdAqbTkdJaq0nV9lChoBmgJaA9DCEBPAwZJvwDAlIaUUpRoFUsyaBZHQKm0dZHuqm11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}