TomRB22 commited on
Commit
7f5bf63
1 Parent(s): 5377380

Update README.md (yet incomplete)

Browse files
Files changed (1) hide show
  1. README.md +213 -0
README.md CHANGED
@@ -1,3 +1,216 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ language:
4
+ - en
5
+ tags:
6
+ - music
7
+ - autoencoder
8
+ - variational autoencoder
9
+ - music generation
10
  ---
11
+
12
+ # Pivaenist
13
+
14
+ Pivaenist is a two-minute, random piano music generator with a VAE architecture.
15
+
16
+ By the use of the aforementioned autoencoder, it allows the user to encode piano music pieces and to generate new ones.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ <!-- Going to include a graph of the VAE, with a description below. -->
23
+
24
+
25
+
26
+ - **Developed by:** TomRB22
27
+ - **Model type:** Variational autoencoder
28
+ - **License:** MIT
29
+
30
+ ### Model Sources [optional]
31
+
32
+ <!-- Provide the basic links for the model. -->
33
+
34
+ - **Repository:** [More Information Needed]
35
+ - **Paper [optional]:** [More Information Needed]
36
+ - **Demo [optional]:** [More Information Needed]
37
+
38
+ ## Uses
39
+ <!-- MENTION COLAB HERE -->
40
+
41
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
42
+
43
+
44
+ ### Using pivaenist in colab
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ If you prefered directly using or testing the model without the need to install it, you can use the following colab notebook and follow its instructions. Moreover, this serves as an example of use.
49
+ [colab link]
50
+
51
+ [More Information Needed]
52
+
53
+ ### Downstream Use [optional]
54
+
55
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
+
57
+ [More Information Needed]
58
+
59
+ ### Out-of-Scope Use
60
+
61
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ## Bias, Risks, and Limitations
66
+
67
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
+
69
+ [More Information Needed]
70
+
71
+ ### Recommendations
72
+
73
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
+
75
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
+
77
+ ## Installation
78
+
79
+ To install the model, you will need to execute the following commands:
80
+
81
+ ```console
82
+ git clone https://huggingface.co/TomRB22/pivaenist
83
+ sudo apt install -y fluidsynth
84
+ pip install -r /content/pivaenist/requirements.txt
85
+ ```
86
+
87
+ The first one will clone the repository. Then, fluidsynth, a real-time MIDI synthesizer, is also set up in order to be used by the pretty-midi library. With the last line, you will make sure to have all dependencies on your system.
88
+
89
+ [More Information Needed]
90
+
91
+ ## Training Details
92
+
93
+ Pivaenist was trained on the [MAESTRO v2.0.0 dataset](https://magenta.tensorflow.org/datasets/maestro){:target="_blank"}, which contains 1282 midi files. Their preprocessing involves splitting each note in pitch, duration and step, which compose a column of a 3xN matrix (which we call song map), where N is the number of notes and a row represents sequentially the different pitches, durations and steps. The VAE's objective is to reconstruct these matrices, making it then possible to generate random maps by sampling from the distribution, and then convert them to a MIDI file.
94
+
95
+ ### Training Data
96
+
97
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
98
+
99
+ [More Information Needed]
100
+
101
+ ### Training Procedure
102
+
103
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
104
+
105
+ #### Preprocessing [optional]
106
+
107
+ [More Information Needed]
108
+
109
+
110
+ #### Training Hyperparameters
111
+
112
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
113
+
114
+ #### Speeds, Sizes, Times [optional]
115
+
116
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
117
+
118
+ [More Information Needed]
119
+
120
+ ## Evaluation
121
+
122
+ <!-- This section describes the evaluation protocols and provides the results. -->
123
+
124
+ ### Testing Data, Factors & Metrics
125
+
126
+ #### Testing Data
127
+
128
+ <!-- This should link to a Data Card if possible. -->
129
+
130
+ [More Information Needed]
131
+
132
+ #### Factors
133
+
134
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
135
+
136
+ [More Information Needed]
137
+
138
+ #### Metrics
139
+
140
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
141
+
142
+ [More Information Needed]
143
+
144
+ ### Results
145
+
146
+ [More Information Needed]
147
+
148
+ #### Summary
149
+
150
+
151
+
152
+ ## Model Examination [optional]
153
+
154
+ <!-- Relevant interpretability work for the model goes here -->
155
+
156
+ [More Information Needed]
157
+
158
+ ## Environmental Impact
159
+
160
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
161
+
162
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
163
+
164
+ - **Hardware Type:** [More Information Needed]
165
+ - **Hours used:** [More Information Needed]
166
+ - **Cloud Provider:** [More Information Needed]
167
+ - **Compute Region:** [More Information Needed]
168
+ - **Carbon Emitted:** [More Information Needed]
169
+
170
+ ## Technical Specifications [optional]
171
+
172
+ ### Model Architecture and Objective
173
+
174
+ [More Information Needed]
175
+
176
+ ### Compute Infrastructure
177
+
178
+ [More Information Needed]
179
+
180
+ #### Hardware
181
+
182
+ [More Information Needed]
183
+
184
+ #### Software
185
+
186
+ [More Information Needed]
187
+
188
+ ## Citation [optional]
189
+
190
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
191
+
192
+ **BibTeX:**
193
+
194
+ [More Information Needed]
195
+
196
+ **APA:**
197
+
198
+ [More Information Needed]
199
+
200
+ ## Glossary [optional]
201
+
202
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
203
+
204
+ [More Information Needed]
205
+
206
+ ## More Information [optional]
207
+
208
+ [More Information Needed]
209
+
210
+ ## Model Card Authors [optional]
211
+
212
+ [More Information Needed]
213
+
214
+ ## Model Card Contact
215
+
216
+ [More Information Needed]