File size: 1,912 Bytes
db2d194 2a6da97 db2d194 2a6da97 db2d194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: facebook/esm2_t30_150M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: esm2_t30_150M_UR50D-finetuned-SO2F
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# esm2_t30_150M_UR50D-finetuned-SO2F
This model is a fine-tuned version of [facebook/esm2_t30_150M_UR50D](https://huggingface.co/facebook/esm2_t30_150M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6608
- Accuracy: 0.7158
- Precision: 0.1682
- Recall: 0.5068
- F1: 0.2526
- Auc: 0.6223
- Mcc: 0.1585
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:|
| No log | 1.0 | 108 | 0.6768 | 0.6886 | 0.1465 | 0.4740 | 0.2238 | 0.5925 | 0.1175 |
| No log | 2.0 | 216 | 0.6646 | 0.6935 | 0.1628 | 0.5397 | 0.2502 | 0.6247 | 0.1573 |
| No log | 3.0 | 324 | 0.6608 | 0.7158 | 0.1682 | 0.5068 | 0.2526 | 0.6223 | 0.1585 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|