File size: 5,703 Bytes
fbc4457 cfd82da 9baf281 cfd82da fbc4457 cfd82da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
---
language:
- af
- am
- ar
- az
- be
- bg
- bn
- ca
- ceb
- co
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fil
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- haw
- he
- hi
- hmn
- ht
- hu
- hy
- id
- ig
- is
- it
- iw
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lb
- lo
- lt
- lv
- mg
- mi
- mk
- ml
- mn
- mr
- ms
- mt
- my
- ne
- nl
- 'no'
- ny
- pa
- pl
- ps
- pt
- ro
- ru
- sd
- si
- sk
- sl
- sm
- sn
- so
- sq
- sr
- st
- su
- sv
- sw
- ta
- te
- tg
- th
- tr
- uk
- und
- ur
- uz
- vi
- xh
- yi
- yo
- zh
- zu
license: mit
datasets:
- mc4
---
# MyT5
## Model Details
MyT5 (**My**te **T5**) is a multilingual language model based on T5 architecture.
The model uses a **m**orphologically-driven **byte** (**MYTE**) representation described in our paper [Limisiewicz et al., 2024](https://arxiv.org/pdf/2403.10691.pdf).
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Tomasz Limisiewicz, Terra Blevins, Hila Gonen, Orevaoghene Ahia, Luke Zettlemoyer
- **Funded by:** University of Washington Fellowship, Charles University Grant Agency
- **Model type:** T5
- **Language(s) (NLP):** Multilingual
- **License:** MIT
### Model Sizes
- **[Small](https://huggingface.co/Tomlim/myt5-small)**: 300M parameters
- **[Base](https://huggingface.co/Tomlim/myt5-base)**: 582M parameters
- **[Large](https://huggingface.co/Tomlim/myt5-large)**: 1.2B parameters
### Model Sources
<!-- Provide the basic links for the model. -->
- **[Repository](https://github.com/tomlimi/MYTE)**
- **[Paper](https://arxiv.org/pdf/2403.10691.pdf)**
## How to Get Started with the Model
The snippet below shows the basic usage of the model for multilingual language modeling.
Custom Tokenizer is available in [GitHub](https://github.com/tomlimi/MYTE])repository, in `src/myt5/myt5_tokenizer.py`.
We also plan to release it on HuggingFace in the future.
```python
from transformers import T5ForConditionalGeneration
from src.myt5.myt5_tokenizer import MyT5Tokenizer
import torch
MODEL_SIZE = "large" # small, base, or large
model = T5ForConditionalGeneration.from_pretrained(f"Tomlim/MyT5_{MODEL_SIZE}", use_safetensors=True)
tokenizer = MyT5Tokenizer()
pre_texts = ['"We now have',
'„Mamy teraz myszy w wieku',
'"""எங்களிடம் இப்போது']
post_texts = ['4-month-old mice that are non-diabetic that used to be diabetic," he added.',
'4 miesięcy, które miały cukrzycę, ale zostały z niej wyleczone” – dodał.',
'4-மாத-வயதுடைய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்போது இல்லை"" என்று அவர் மேலும் கூறினார்."']
inputs = tokenizer(pre_texts, padding="longest", return_tensors="pt")
targets = tokenizer(post_texts, padding="longest", return_tensors="pt")
outputs = model(**inputs, labels=targets.input_ids)
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
```
## Training Details
### Training Data
The model was trained on the standard T5 task of restoring corrupted spans in the multilingual MC4 dataset.
### Preprocessing
Instead of UTF-8 bytes, we used morphologically-driven byte representation.
See the description in our [paper](https://arxiv.org/pdf/2403.10691.pdf) for more details.
### Training Hyperparameters
We used the same hyperparameters as in the original ByT5 paper.
The only difference is that we decreased the number of training steps to 250,000 to avoid overfiting.
### Computational Infrastructure
Models were trained on TPUs available through TPU Research Cloud (TRC).
We used v3-8 TPU for training small and base models and v3-32 for a large model.
The training for each instance took:
- **Small**: 90h
- **Base**: 230h
- **Large**: 190h
# Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
MyT5 models are compared with reimplementation of [ByT5](https://huggingface.co/docs/transformers/model_doc/byt5) models trained for 250,000 steps.
## Language Modeling
We have evaluated LM performance on multi-parallel [FLORES 200](https://arxiv.org/pdf/2207.04672v3.pdf) corpus.
To compare the scores across languages and models, we used a normalized metric, i.e., Bit-per-English-Byte (BPEB).
### Results
| | | ByT5 | | MyT5 | |
|-------|-----------|------|--------|------|--------|
| | | BPEB | T (ms) | BPEB | T (ms) |
| small | All | 10.1 | 7.0 | 4.6 | 6.7 |
| | Latin | 4.6 | 5.9 | 4.2 | 6.6 |
| | Non Latin | 18.1 | 8.5 | 5.1 | 6.8 |
| base | All | 8.2 | 11.5 | 5.8 | 8.9 |
| | Latin | 4.9 | 9.4 | 5.0 | 8.7 |
| | Non Latin | 13.0 | 14.6 | 6.9 | 9.1 |
| large | All | 13.4 | 31.8 | 4.6 | 26.7 |
| | Latin | 10.1 | 28.1 | 4.0 | 26.6 |
| | Non Latin | 18.2 | 37.3 | 5.4 | 27.0 |
Byte-per-English-Bits and Inference times (average per Flores 200 sentence) averaged for three language groupings.
The inference was run on an A40 GPU core.
## Citation
```bibtex
@misc{limisiewicz2024myte,
title={MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling},
author={Tomasz Limisiewicz and Terra Blevins and Hila Gonen and Orevaoghene Ahia and Luke Zettlemoyer},
year={2024},
eprint={2403.10691},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## Model Card Author
[Tomasz Limisiewicz](mailto:[email protected]) |