--- license: apache-2.0 base_model: bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - recall - accuracy model-index: - name: multibert1110_lrate7.5b4 results: [] --- # multibert1110_lrate7.5b4 This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7163 - Precisions: 0.8864 - Recall: 0.8013 - F-measure: 0.8374 - Accuracy: 0.9059 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:----------:|:------:|:---------:|:--------:| | 0.7304 | 1.0 | 942 | 0.4905 | 0.8049 | 0.6436 | 0.6549 | 0.8554 | | 0.4336 | 2.0 | 1884 | 0.6035 | 0.8585 | 0.6334 | 0.6863 | 0.8477 | | 0.3238 | 3.0 | 2826 | 0.5094 | 0.8668 | 0.7014 | 0.7232 | 0.8882 | | 0.249 | 4.0 | 3768 | 0.5951 | 0.8798 | 0.7110 | 0.7609 | 0.8770 | | 0.191 | 5.0 | 4710 | 0.4988 | 0.8304 | 0.7761 | 0.7816 | 0.8975 | | 0.1513 | 6.0 | 5652 | 0.5998 | 0.8351 | 0.7917 | 0.8062 | 0.8962 | | 0.1088 | 7.0 | 6594 | 0.5874 | 0.8427 | 0.7953 | 0.8158 | 0.9003 | | 0.0914 | 8.0 | 7536 | 0.5529 | 0.8580 | 0.7885 | 0.8087 | 0.9069 | | 0.0682 | 9.0 | 8478 | 0.6882 | 0.8371 | 0.7773 | 0.8024 | 0.8958 | | 0.0487 | 10.0 | 9420 | 0.7163 | 0.8864 | 0.8013 | 0.8374 | 0.9059 | | 0.0319 | 11.0 | 10362 | 0.7020 | 0.8724 | 0.7867 | 0.8235 | 0.9007 | | 0.0305 | 12.0 | 11304 | 0.6886 | 0.8689 | 0.8002 | 0.8311 | 0.9079 | | 0.0184 | 13.0 | 12246 | 0.6994 | 0.8680 | 0.8089 | 0.8357 | 0.9085 | | 0.0138 | 14.0 | 13188 | 0.7183 | 0.8677 | 0.8105 | 0.8362 | 0.9093 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1