from transformers import PretrainedConfig from typing import List class OffensivenessEstimationConfig(PretrainedConfig): model_type = "offensiveness_estimation" def __init__( self, language_model: str = 'studio-ousia/luke-japanese-large-lite', output_class_num: int = 11, reinit_n_layers: int = 1, dropout_rate: float = 0.1, **kwargs, ): # if block_type not in ["basic", "bottleneck"]: # raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") # if stem_type not in ["", "deep", "deep-tiered"]: # raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.language_model = language_model self.output_class_num = output_class_num self.reinit_n_layers = reinit_n_layers self.dropout_rate = dropout_rate super().__init__(**kwargs)