--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: deberta-base-finetuned-qqp results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: qqp split: train args: qqp metrics: - name: Accuracy type: accuracy value: 0.9127627999010636 - name: F1 type: f1 value: 0.8844099236391046 --- # deberta-base-finetuned-qqp This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2617 - Accuracy: 0.9128 - F1: 0.8844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.2412 | 1.0 | 22741 | 0.2369 | 0.9048 | 0.8753 | | 0.1742 | 2.0 | 45482 | 0.2617 | 0.9128 | 0.8844 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2