Update README.md
Browse files
README.md
CHANGED
@@ -58,128 +58,106 @@ This model is not meant as a decision support system in the wild, only for educa
|
|
58 |
|
59 |
## How to Get Started with the Model
|
60 |
|
|
|
|
|
|
|
|
|
61 |
Use the code below to get started with the model.
|
62 |
|
63 |
```python
|
64 |
-
from transformers import
|
65 |
-
from peft import PeftModel, PeftConfig
|
66 |
import torch
|
67 |
import gradio as gr
|
68 |
-
import random
|
69 |
-
from textwrap import wrap
|
70 |
-
|
71 |
-
# Functions to Wrap the Prompt Correctly
|
72 |
-
def wrap_text(text, width=90):
|
73 |
-
lines = text.split('\n')
|
74 |
-
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
75 |
-
wrapped_text = '\n'.join(wrapped_lines)
|
76 |
-
return wrapped_text
|
77 |
-
|
78 |
-
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
79 |
-
"""
|
80 |
-
Generates text using a large language model, given a user input and a system prompt.
|
81 |
-
Args:
|
82 |
-
user_input: The user's input text to generate a response for.
|
83 |
-
system_prompt: Optional system prompt.
|
84 |
-
Returns:
|
85 |
-
A string containing the generated text.
|
86 |
-
"""
|
87 |
-
# Combine user input and system prompt
|
88 |
-
formatted_input = f"Question: {system_prompt} {user_input} \n Mini :"
|
89 |
-
|
90 |
-
# Encode the input text
|
91 |
-
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
92 |
-
model_inputs = encodeds.to(device)
|
93 |
-
|
94 |
-
# Generate a response using the model
|
95 |
-
output = model.generate(
|
96 |
-
**model_inputs,
|
97 |
-
max_length=max_length,
|
98 |
-
use_cache=True,
|
99 |
-
early_stopping=True,
|
100 |
-
bos_token_id=model.config.bos_token_id,
|
101 |
-
eos_token_id=model.config.eos_token_id,
|
102 |
-
pad_token_id=model.config.eos_token_id,
|
103 |
-
temperature=0.1,
|
104 |
-
do_sample=True
|
105 |
-
)
|
106 |
-
|
107 |
-
# Decode the response
|
108 |
-
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
109 |
-
|
110 |
-
return response_text
|
111 |
|
112 |
# Define the device
|
113 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
114 |
|
115 |
-
# Use
|
116 |
base_model_id = "mistralai/Mistral-7B-v0.1"
|
117 |
model_directory = "Tonic/GaiaMiniMed"
|
118 |
|
119 |
# Instantiate the Tokenizer
|
120 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
121 |
-
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
|
122 |
tokenizer.pad_token = tokenizer.eos_token
|
123 |
tokenizer.padding_side = 'left'
|
124 |
|
125 |
-
# Load the
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
#
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
#
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
#
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
160 |
|
161 |
# Decode the generated response to text
|
162 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
163 |
-
|
164 |
-
return response_text # Return the generated response
|
165 |
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
iface = gr.Interface(
|
173 |
-
fn=
|
174 |
title=title,
|
175 |
description=description,
|
176 |
examples=examples,
|
177 |
-
inputs=[
|
|
|
|
|
178 |
outputs="text",
|
179 |
theme="ParityError/Anime"
|
180 |
)
|
181 |
|
|
|
182 |
iface.launch()
|
|
|
183 |
```
|
184 |
|
185 |
## Training Details
|
|
|
58 |
|
59 |
## How to Get Started with the Model
|
60 |
|
61 |
+
Try it here : [Pseudolab/GaiaMiniMed](https://huggingface.co/spaces/pseudolab/GaiaMiniMed)
|
62 |
+
|
63 |
+
See the [author's demo](https://huggingface.co/spaces/tonic/gaiaminimed)
|
64 |
+
|
65 |
Use the code below to get started with the model.
|
66 |
|
67 |
```python
|
68 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
69 |
import torch
|
70 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
# Define the device
|
73 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
74 |
|
75 |
+
# Use model IDs as variables
|
76 |
base_model_id = "mistralai/Mistral-7B-v0.1"
|
77 |
model_directory = "Tonic/GaiaMiniMed"
|
78 |
|
79 |
# Instantiate the Tokenizer
|
80 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
|
|
|
81 |
tokenizer.pad_token = tokenizer.eos_token
|
82 |
tokenizer.padding_side = 'left'
|
83 |
|
84 |
+
# Load the Falcon model with the specified configuration
|
85 |
+
falcon_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-7b-instruct")
|
86 |
+
|
87 |
+
# Class to encapsulate the Falcon chatbot
|
88 |
+
class FalconChatBot:
|
89 |
+
def __init__(self, system_prompt="You are an expert medical analyst:"):
|
90 |
+
self.system_prompt = system_prompt
|
91 |
+
|
92 |
+
def process_history(self, history):
|
93 |
+
# Filter out special commands from the history
|
94 |
+
filtered_history = []
|
95 |
+
for message in history:
|
96 |
+
user_message = message["user"]
|
97 |
+
assistant_message = message["assistant"]
|
98 |
+
# Check if the user_message is not a special command
|
99 |
+
if not user_message.startswith("Falcon:"):
|
100 |
+
filtered_history.append({"user": user_message, "assistant": assistant_message})
|
101 |
+
return filtered_history
|
102 |
+
|
103 |
+
def predict(self, input_data, max_length=500):
|
104 |
+
# Extract messages from the input data
|
105 |
+
preprompt = input_data["preprompt"]
|
106 |
+
history = input_data["history"]
|
107 |
+
|
108 |
+
# Process the history to remove special commands
|
109 |
+
processed_history = self.process_history(history)
|
110 |
+
|
111 |
+
# Generate the formatted conversation in Falcon message format
|
112 |
+
conversation = f"{preprompt}\n"
|
113 |
+
for message in processed_history:
|
114 |
+
user_message = message["user"]
|
115 |
+
assistant_message = message["assistant"]
|
116 |
+
conversation += f"User: {user_message}\nFalcon:{' ' + assistant_message if assistant_message else ''}\n"
|
117 |
+
|
118 |
+
# Encode the formatted conversation using the tokenizer
|
119 |
+
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
120 |
+
|
121 |
+
# Generate a response using the Falcon model
|
122 |
+
response = falcon_model.generate(input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=falcon_model.config.bos_token_id, eos_token_id=falcon_model.config.eos_token_id, pad_token_id=falcon_model.config.eos_token_id, temperature=0.1, do_sample=True)
|
123 |
|
124 |
# Decode the generated response to text
|
125 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
|
|
126 |
|
127 |
+
return response_text
|
128 |
+
|
129 |
+
# Create the Falcon chatbot instance
|
130 |
+
falcon_bot = FalconChatBot()
|
131 |
+
|
132 |
+
# Define the Gradio interface
|
133 |
+
title = "馃憢馃徎Welcome to Falcon's Medical Expert Chat馃殌"
|
134 |
+
description = "You can use this Space to test out the Falcon model [(tiiuae/falcon-7b-instruct)](https://huggingface.co/tiiuae/falcon-7b-instruct) or duplicate this Space and use it locally or on 馃HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
135 |
+
examples = [{
|
136 |
+
"preprompt": "system message",
|
137 |
+
"history": [{
|
138 |
+
"user": "user message 1",
|
139 |
+
"assistant": "assistant message 1"
|
140 |
+
}, {
|
141 |
+
"user": "user message 1",
|
142 |
+
"assistant": None
|
143 |
+
}]
|
144 |
+
}]
|
145 |
|
146 |
iface = gr.Interface(
|
147 |
+
fn=falcon_bot.predict,
|
148 |
title=title,
|
149 |
description=description,
|
150 |
examples=examples,
|
151 |
+
inputs=[
|
152 |
+
gr.inputs.Textbox(label="Input Data", type="json),
|
153 |
+
],
|
154 |
outputs="text",
|
155 |
theme="ParityError/Anime"
|
156 |
)
|
157 |
|
158 |
+
# Launch the Gradio interface for the Falcon model
|
159 |
iface.launch()
|
160 |
+
|
161 |
```
|
162 |
|
163 |
## Training Details
|