Update README.md
Browse files
README.md
CHANGED
@@ -66,120 +66,78 @@ See the [author's demo](https://huggingface.co/spaces/tonic/gaiaminimed)
|
|
66 |
Use the code below to get started with the model.
|
67 |
|
68 |
```python
|
69 |
-
|
|
|
70 |
from peft import PeftModel, PeftConfig
|
71 |
import torch
|
72 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
76 |
-
|
77 |
|
78 |
-
|
79 |
base_model_id = "tiiuae/falcon-7b-instruct"
|
80 |
model_directory = "Tonic/GaiaMiniMed"
|
81 |
|
82 |
-
# Instantiate the Tokenizer
|
83 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
#peft_config = PeftConfig(
|
89 |
-
# max_length=500,
|
90 |
-
# use_cache=True,
|
91 |
-
# early_stopping=False,
|
92 |
-
# bos_token_id=tokenizer.bos_token_id, # Use the tokenizer's BOS token ID
|
93 |
-
# eos_token_id=tokenizer.eos_token_id, # Use the tokenizer's EOS token ID
|
94 |
-
# pad_token_id=tokenizer.eos_token_id, # Use the tokenizer's EOS token ID
|
95 |
-
# temperature=0.4,
|
96 |
-
# do_sample=True
|
97 |
-
#)
|
98 |
-
|
99 |
-
|
100 |
-
# Load the GaiaMiniMed model with the specified configuration
|
101 |
-
# Load the Peft model with a specific configuration
|
102 |
-
# Specify the configuration class for the model
|
103 |
-
model_config = PeftConfig.from_pretrained(model_directory) #use base falcon config
|
104 |
-
# Load the PEFT model with the specified configuration
|
105 |
-
peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
|
106 |
-
peft_model = PeftModel.from_pretrained(model="Tonic/GaiaMiniMed")
|
107 |
-
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/GaiaMiniMed")
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
# Class to encapsulate the Falcon chatbot
|
112 |
-
class FalconChatBot:
|
113 |
def __init__(self, system_prompt="You are an expert medical analyst:"):
|
114 |
self.system_prompt = system_prompt
|
|
|
115 |
|
116 |
-
def
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
user_message = message["user"]
|
121 |
-
assistant_message = message["assistant"]
|
122 |
-
# Check if the user_message is not a special command
|
123 |
-
if not user_message.startswith("Falcon:"):
|
124 |
-
filtered_history.append({"user": user_message, "assistant": assistant_message})
|
125 |
-
return filtered_history
|
126 |
-
|
127 |
-
def predict(self, input_data, max_length=500):
|
128 |
-
# Extract messages from the input data
|
129 |
-
preprompt = input_data["preprompt"]
|
130 |
-
history = input_data["history"]
|
131 |
-
|
132 |
-
# Process the history to remove special commands
|
133 |
-
processed_history = self.process_history(history)
|
134 |
-
|
135 |
-
# Generate the formatted conversation in Falcon message format
|
136 |
-
conversation = f"{preprompt}\n"
|
137 |
-
for message in processed_history:
|
138 |
-
user_message = message["user"]
|
139 |
-
assistant_message = message["assistant"]
|
140 |
-
conversation += f"Falcon:{' ' + assistant_message if assistant_message else ''} User: {user_message}\n Falcon:\n"
|
141 |
-
|
142 |
-
# Encode the formatted conversation using the tokenizer
|
143 |
-
input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
|
144 |
-
|
145 |
-
# Generate a response using the Falcon model
|
146 |
-
response = falcon_model.generate(input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=falcon_model.config.bos_token_id, eos_token_id=falcon_model.config.eos_token_id, pad_token_id=falcon_model.config.eos_token_id, temperature=0.4, do_sample=True)
|
147 |
-
|
148 |
-
# Decode the generated response to text
|
149 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
|
|
|
|
150 |
|
151 |
return response_text
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 馃HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
159 |
-
examples = [{
|
160 |
-
"preprompt": "system message",
|
161 |
-
"history": [{
|
162 |
-
"user": "user message 1",
|
163 |
-
"assistant": "assistant message 1"
|
164 |
-
}, {
|
165 |
-
"user": "user message 1",
|
166 |
-
"assistant": None
|
167 |
-
}]
|
168 |
-
}]
|
169 |
|
170 |
iface = gr.Interface(
|
171 |
-
fn=
|
172 |
title=title,
|
173 |
description=description,
|
174 |
examples=examples,
|
175 |
-
inputs=[
|
176 |
-
gr.inputs.Textbox(label="Input Data", type="json"),
|
177 |
-
],
|
178 |
outputs="text",
|
179 |
theme="ParityError/Anime"
|
180 |
)
|
181 |
|
182 |
-
# Launch the Gradio interface for the Falcon model
|
183 |
iface.launch()
|
184 |
|
185 |
```
|
|
|
66 |
Use the code below to get started with the model.
|
67 |
|
68 |
```python
|
69 |
+
|
70 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
71 |
from peft import PeftModel, PeftConfig
|
72 |
import torch
|
73 |
import gradio as gr
|
74 |
+
import random
|
75 |
+
from textwrap import wrap
|
76 |
+
|
77 |
+
def wrap_text(text, width=90):
|
78 |
+
lines = text.split('\n')
|
79 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
80 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
81 |
+
return wrapped_text
|
82 |
+
|
83 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
84 |
+
formatted_input = f"{{{{ {system_prompt} }}}}\nUser: {user_input}\nFalcon:"
|
85 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
86 |
+
model_inputs = encodeds.to(device)
|
87 |
+
output = model.generate(
|
88 |
+
**model_inputs,
|
89 |
+
max_length=500,
|
90 |
+
use_cache=True,
|
91 |
+
early_stopping=False,
|
92 |
+
bos_token_id=peft_model.config.bos_token_id,
|
93 |
+
eos_token_id=peft_model.config.eos_token_id,
|
94 |
+
pad_token_id=peft_model.config.eos_token_id,
|
95 |
+
temperature=0.4,
|
96 |
+
do_sample=True
|
97 |
+
)
|
98 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
99 |
|
100 |
+
return response_text
|
|
|
|
|
101 |
|
102 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
103 |
base_model_id = "tiiuae/falcon-7b-instruct"
|
104 |
model_directory = "Tonic/GaiaMiniMed"
|
105 |
|
|
|
106 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left")
|
107 |
+
model_config = AutoConfig.from_pretrained(base_model_id)
|
108 |
+
peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config)
|
109 |
+
peft_model = PeftModel.from_pretrained(peft_model, model_directory)
|
110 |
+
class ChatBot:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
def __init__(self, system_prompt="You are an expert medical analyst:"):
|
112 |
self.system_prompt = system_prompt
|
113 |
+
self.history = []
|
114 |
|
115 |
+
def predict(self, user_input, system_prompt):
|
116 |
+
formatted_input = f"{{{{ {self.system_prompt} }}}}\nUser: {user_input}\nFalcon:"
|
117 |
+
input_ids = tokenizer.encode(formatted_input, return_tensors="pt", add_special_tokens=False)
|
118 |
+
response = peft_model.generate(input_ids, max_length=900, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
120 |
+
self.history.append(formatted_input)
|
121 |
+
self.history.append(response_text)
|
122 |
|
123 |
return response_text
|
124 |
|
125 |
+
bot = ChatBot()
|
126 |
+
|
127 |
+
title = "馃憢馃徎Welcome to Tonic's GaiaMiniMed Chat馃殌"
|
128 |
+
description = "You can use this Space to test out the current model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 馃HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
129 |
+
examples = [["What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
iface = gr.Interface(
|
132 |
+
fn=bot.predict,
|
133 |
title=title,
|
134 |
description=description,
|
135 |
examples=examples,
|
136 |
+
inputs=["text", "text"],
|
|
|
|
|
137 |
outputs="text",
|
138 |
theme="ParityError/Anime"
|
139 |
)
|
140 |
|
|
|
141 |
iface.launch()
|
142 |
|
143 |
```
|