Question Answering
PEFT
English
medical
Tonic commited on
Commit
edcfec5
1 Parent(s): bd33414

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -8
README.md CHANGED
@@ -65,15 +65,17 @@ See the [author's demo](https://huggingface.co/spaces/tonic/gaiaminimed)
65
  Use the code below to get started with the model.
66
 
67
  ```python
68
- from transformers import AutoTokenizer, AutoModelForCausalLM
 
69
  import torch
70
  import gradio as gr
71
 
72
  # Define the device
73
  device = "cuda" if torch.cuda.is_available() else "cpu"
74
 
 
75
  # Use model IDs as variables
76
- base_model_id = "mistralai/Mistral-7B-v0.1"
77
  model_directory = "Tonic/GaiaMiniMed"
78
 
79
  # Instantiate the Tokenizer
@@ -82,13 +84,16 @@ tokenizer.pad_token = tokenizer.eos_token
82
  tokenizer.padding_side = 'left'
83
 
84
 
 
85
  # Load the GaiaMiniMed model with the specified configuration
86
- # Load the Peft model with a specific configuration
87
- peft_config = PeftConfig.from_pretrained("Tonic/GaiaMiniMed")
88
- peft_model = PeftModel.from_pretrained("Tonic/GaiaMiniMed", config=peft_config)
 
 
 
 
89
 
90
- # Now you can use peft_model without any NameError
91
- peft_model = peft_model.to_bettertransformer("tiiuae/falcon-7b-instruct")
92
 
93
  # Class to encapsulate the Falcon chatbot
94
  class FalconChatBot:
@@ -125,7 +130,7 @@ class FalconChatBot:
125
  input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
126
 
127
  # Generate a response using the Falcon model
128
- response = falcon_model.generate(input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=falcon_model.config.bos_token_id, eos_token_id=falcon_model.config.eos_token_id, pad_token_id=falcon_model.config.eos_token_id, temperature=0.1, do_sample=True)
129
 
130
  # Decode the generated response to text
131
  response_text = tokenizer.decode(response[0], skip_special_tokens=True)
 
65
  Use the code below to get started with the model.
66
 
67
  ```python
68
+ from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
69
+ from peft import PeftModel, PeftConfig
70
  import torch
71
  import gradio as gr
72
 
73
  # Define the device
74
  device = "cuda" if torch.cuda.is_available() else "cpu"
75
 
76
+
77
  # Use model IDs as variables
78
+ base_model_id = "tiiuae/falcon-7b-instruct"
79
  model_directory = "Tonic/GaiaMiniMed"
80
 
81
  # Instantiate the Tokenizer
 
84
  tokenizer.padding_side = 'left'
85
 
86
 
87
+
88
  # Load the GaiaMiniMed model with the specified configuration
89
+ # Specify the configuration class for the model
90
+ model_config = AutoConfig.from_pretrained(base_model_id)
91
+ # Load the PEFT model with the specified configuration
92
+ peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
93
+ peft_model = PeftModel.from_pretrained("Tonic/GaiaMiniMed")
94
+ peft_model = PeftModel.from_pretrained(peft_model, "Tonic/GaiaMiniMed")
95
+
96
 
 
 
97
 
98
  # Class to encapsulate the Falcon chatbot
99
  class FalconChatBot:
 
130
  input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False)
131
 
132
  # Generate a response using the Falcon model
133
+ response = falcon_model.generate(input_ids, max_length=max_length, use_cache=True, early_stopping=True, bos_token_id=falcon_model.config.bos_token_id, eos_token_id=falcon_model.config.eos_token_id, pad_token_id=falcon_model.config.eos_token_id, temperature=0.4, do_sample=True)
134
 
135
  # Decode the generated response to text
136
  response_text = tokenizer.decode(response[0], skip_special_tokens=True)