Upload folder using huggingface_hub
Browse files- added_tokens.json +1 -0
- config.json +28 -0
- eval_results.txt +20 -0
- model_args.json +1 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +1 -0
- test_eval_ar.txt +43 -0
- test_eval_en.txt +43 -0
- test_eval_fr.txt +43 -0
- test_eval_ru.txt +43 -0
- test_eval_zh.txt +43 -0
- tokenizer_config.json +1 -0
- training_args.bin +3 -0
added_tokens.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<e>": 250002, "</e>": 250003}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.16.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250004
|
28 |
+
}
|
eval_results.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accuracy = 0.7996906419180201
|
2 |
+
cls_report = precision recall f1-score support
|
3 |
+
|
4 |
+
0.0 0.7790 0.8465 0.8114 658
|
5 |
+
1.0 0.8253 0.7512 0.7865 635
|
6 |
+
|
7 |
+
accuracy 0.7997 1293
|
8 |
+
macro avg 0.8021 0.7988 0.7989 1293
|
9 |
+
weighted avg 0.8017 0.7997 0.7991 1293
|
10 |
+
|
11 |
+
eval_loss = 0.4485675318189609
|
12 |
+
fn = 158
|
13 |
+
fp = 101
|
14 |
+
macro_f1 = 0.7989208916034054
|
15 |
+
mcc = 0.6009740320695361
|
16 |
+
tn = 557
|
17 |
+
tp = 477
|
18 |
+
weighted_f1 = 0.7991421948188572
|
19 |
+
weighted_p = 0.8021402472959567
|
20 |
+
weighted_r = 0.7988428308163606
|
model_args.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_P_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 729, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "P", "special_tags": ["<e>", "</e>"], "merge_n": 2, "merge_type": "concat"}
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb11ec5673760792b1f7a6b600aadce1575f5654578ff3a328d76a1e9c0d1a68
|
3 |
+
size 4504578173
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4e37dca701c36ca7038957b022bc446ac558ba51e115ec10987d618d49e39fe
|
3 |
+
size 2256539517
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d390f69ee9173b5a24de5849a4c781ca11142415bd7ea7442bbe07008fc485
|
3 |
+
size 627
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
|
test_eval_ar.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8291 0.7760 0.8017 500
|
5 |
+
T 0.7895 0.8400 0.8140 500
|
6 |
+
|
7 |
+
accuracy 0.8080 1000
|
8 |
+
macro avg 0.8093 0.8080 0.8078 1000
|
9 |
+
weighted avg 0.8093 0.8080 0.8078 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7857142857142857
|
14 |
+
Weighted Recall = 0.7857142857142857
|
15 |
+
Weighted Precision = 0.7987012987012988
|
16 |
+
Weighted F1 = 0.7855134556165483
|
17 |
+
Macro Recall = 0.7918238993710691
|
18 |
+
Macro Precision = 0.7929292929292929
|
19 |
+
Macro F1 = 0.7856919712589814
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.9
|
22 |
+
Weighted Recall = 0.9
|
23 |
+
Weighted Precision = 0.9111111111111111
|
24 |
+
Weighted F1 = 0.8862745098039216
|
25 |
+
Macro Recall = 0.75
|
26 |
+
Macro Precision = 0.9444444444444444
|
27 |
+
Macro F1 = 0.803921568627451
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.8016194331983806
|
30 |
+
Weighted Recall = 0.8016194331983806
|
31 |
+
Weighted Precision = 0.8020173708432817
|
32 |
+
Weighted F1 = 0.8014892301846458
|
33 |
+
Macro Recall = 0.8013442622950819
|
34 |
+
Macro Precision = 0.8021367521367522
|
35 |
+
Macro F1 = 0.8014111083764048
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8190954773869347
|
38 |
+
Weighted Recall = 0.8190954773869347
|
39 |
+
Weighted Precision = 0.820368646605092
|
40 |
+
Weighted F1 = 0.8189857967366196
|
41 |
+
Macro Recall = 0.8193802560800061
|
42 |
+
Macro Precision = 0.8201564517353991
|
43 |
+
Macro F1 = 0.8190223569533914
|
test_eval_en.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8798 0.9080 0.8937 500
|
5 |
+
T 0.9050 0.8760 0.8902 500
|
6 |
+
|
7 |
+
accuracy 0.8920 1000
|
8 |
+
macro avg 0.8924 0.8920 0.8920 1000
|
9 |
+
weighted avg 0.8924 0.8920 0.8920 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.8819444444444444
|
14 |
+
Weighted Recall = 0.8819444444444444
|
15 |
+
Weighted Precision = 0.882109500805153
|
16 |
+
Weighted F1 = 0.8819843917006387
|
17 |
+
Macro Recall = 0.8819659442724458
|
18 |
+
Macro Precision = 0.8814492753623189
|
19 |
+
Macro F1 = 0.8816648136510852
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.7333333333333333
|
22 |
+
Weighted Recall = 0.7333333333333333
|
23 |
+
Weighted Precision = 0.7944444444444445
|
24 |
+
Weighted F1 = 0.7333333333333333
|
25 |
+
Macro Recall = 0.7638888888888888
|
26 |
+
Macro Precision = 0.7638888888888888
|
27 |
+
Macro F1 = 0.7333333333333334
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.8882575757575758
|
30 |
+
Weighted Recall = 0.8882575757575758
|
31 |
+
Weighted Precision = 0.8889153569860092
|
32 |
+
Weighted F1 = 0.8882002236169277
|
33 |
+
Macro Recall = 0.8881770571777028
|
34 |
+
Macro Precision = 0.8889751552795031
|
35 |
+
Macro F1 = 0.8881897959549916
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.9194630872483222
|
38 |
+
Weighted Recall = 0.9194630872483222
|
39 |
+
Weighted Precision = 0.9213610243880368
|
40 |
+
Weighted F1 = 0.9193722943722944
|
41 |
+
Macro Recall = 0.9194630872483222
|
42 |
+
Macro Precision = 0.9213610243880368
|
43 |
+
Macro F1 = 0.9193722943722944
|
test_eval_fr.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.8016 0.8160 0.8087 500
|
5 |
+
T 0.8126 0.7980 0.8052 500
|
6 |
+
|
7 |
+
accuracy 0.8070 1000
|
8 |
+
macro avg 0.8071 0.8070 0.8070 1000
|
9 |
+
weighted avg 0.8071 0.8070 0.8070 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.7934782608695652
|
14 |
+
Weighted Recall = 0.7934782608695652
|
15 |
+
Weighted Precision = 0.7974546491376786
|
16 |
+
Weighted F1 = 0.7939677068682155
|
17 |
+
Macro Recall = 0.7957771680782536
|
18 |
+
Macro Precision = 0.7929812123360511
|
19 |
+
Macro F1 = 0.7928664533712526
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.9333333333333333
|
22 |
+
Weighted Recall = 0.9333333333333333
|
23 |
+
Weighted Precision = 0.9391304347826086
|
24 |
+
Weighted F1 = 0.930681818181818
|
25 |
+
Macro Recall = 0.8888888888888888
|
26 |
+
Macro Precision = 0.9565217391304348
|
27 |
+
Macro F1 = 0.9147727272727273
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7859922178988327
|
30 |
+
Weighted Recall = 0.7859922178988327
|
31 |
+
Weighted Precision = 0.7868988198231214
|
32 |
+
Weighted F1 = 0.7856804851459047
|
33 |
+
Macro Recall = 0.7854557569699998
|
34 |
+
Macro Precision = 0.7871254703041934
|
35 |
+
Macro F1 = 0.7855246187694408
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.8419117647058824
|
38 |
+
Weighted Recall = 0.8419117647058824
|
39 |
+
Weighted Precision = 0.8458034075699246
|
40 |
+
Weighted F1 = 0.8394913284462723
|
41 |
+
Macro Recall = 0.8288116901020127
|
42 |
+
Macro Precision = 0.8496950504339666
|
43 |
+
Macro F1 = 0.8346504559270518
|
test_eval_ru.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.7042 0.8000 0.7491 500
|
5 |
+
T 0.7685 0.6640 0.7124 500
|
6 |
+
|
7 |
+
accuracy 0.7320 1000
|
8 |
+
macro avg 0.7364 0.7320 0.7308 1000
|
9 |
+
weighted avg 0.7364 0.7320 0.7308 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.6666666666666666
|
14 |
+
Weighted Recall = 0.6666666666666666
|
15 |
+
Weighted Precision = 0.7687400318979267
|
16 |
+
Weighted F1 = 0.6666666666666666
|
17 |
+
Macro Recall = 0.7177033492822966
|
18 |
+
Macro Precision = 0.7177033492822966
|
19 |
+
Macro F1 = 0.6666666666666666
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.4375
|
22 |
+
Weighted Recall = 0.4375
|
23 |
+
Weighted Precision = 0.5113636363636364
|
24 |
+
Weighted F1 = 0.42647058823529416
|
25 |
+
Macro Recall = 0.4833333333333333
|
26 |
+
Macro Precision = 0.4818181818181818
|
27 |
+
Macro F1 = 0.43529411764705883
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.7439862542955327
|
30 |
+
Weighted Recall = 0.7439862542955327
|
31 |
+
Weighted Precision = 0.7459487120816265
|
32 |
+
Weighted F1 = 0.7428299703669132
|
33 |
+
Macro Recall = 0.7420921985815603
|
34 |
+
Macro Precision = 0.7465184578904924
|
35 |
+
Macro F1 = 0.7421585796986825
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.7311827956989247
|
38 |
+
Weighted Recall = 0.7311827956989247
|
39 |
+
Weighted Precision = 0.7356482071769588
|
40 |
+
Weighted F1 = 0.7303416466893777
|
41 |
+
Macro Recall = 0.7321536993668141
|
42 |
+
Macro Precision = 0.7350900307422046
|
43 |
+
Macro F1 = 0.7305519339417644
|
test_eval_zh.txt
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Default classification report:
|
2 |
+
precision recall f1-score support
|
3 |
+
|
4 |
+
F 0.6050 0.6740 0.6377 500
|
5 |
+
T 0.6321 0.5600 0.5938 500
|
6 |
+
|
7 |
+
accuracy 0.6170 1000
|
8 |
+
macro avg 0.6185 0.6170 0.6158 1000
|
9 |
+
weighted avg 0.6185 0.6170 0.6158 1000
|
10 |
+
|
11 |
+
|
12 |
+
ADJ
|
13 |
+
Accuracy = 0.532258064516129
|
14 |
+
Weighted Recall = 0.532258064516129
|
15 |
+
Weighted Precision = 0.5745007680491552
|
16 |
+
Weighted F1 = 0.5362829625268115
|
17 |
+
Macro Recall = 0.5493421052631579
|
18 |
+
Macro Precision = 0.5476190476190476
|
19 |
+
Macro F1 = 0.53116036505867
|
20 |
+
ADV
|
21 |
+
Accuracy = 0.6
|
22 |
+
Weighted Recall = 0.6
|
23 |
+
Weighted Precision = 0.8666666666666666
|
24 |
+
Weighted F1 = 0.6333333333333333
|
25 |
+
Macro Recall = 0.75
|
26 |
+
Macro Precision = 0.6666666666666666
|
27 |
+
Macro F1 = 0.5833333333333333
|
28 |
+
NOUN
|
29 |
+
Accuracy = 0.6299638989169675
|
30 |
+
Weighted Recall = 0.6299638989169675
|
31 |
+
Weighted Precision = 0.6298372139778151
|
32 |
+
Weighted F1 = 0.6298492264125135
|
33 |
+
Macro Recall = 0.6294992175273866
|
34 |
+
Macro Precision = 0.6296598550630019
|
35 |
+
Macro F1 = 0.6295281434000424
|
36 |
+
VERB
|
37 |
+
Accuracy = 0.6126373626373627
|
38 |
+
Weighted Recall = 0.6126373626373627
|
39 |
+
Weighted Precision = 0.6140917905623788
|
40 |
+
Weighted F1 = 0.6082284632153951
|
41 |
+
Macro Recall = 0.6092238878143134
|
42 |
+
Macro Precision = 0.6143562320032908
|
43 |
+
Macro F1 = 0.6066252270619524
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24465011e92b2755b9b6aa176ffcc145b165321ff7ea74629d8389f33a39642a
|
3 |
+
size 2811
|