HHansi commited on
Commit
eae9c9b
·
verified ·
1 Parent(s): b40d3b7

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<e>": 250002, "</e>": 250003}
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.16.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250004
28
+ }
eval_results.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ accuracy = 0.7996906419180201
2
+ cls_report = precision recall f1-score support
3
+
4
+ 0.0 0.7790 0.8465 0.8114 658
5
+ 1.0 0.8253 0.7512 0.7865 635
6
+
7
+ accuracy 0.7997 1293
8
+ macro avg 0.8021 0.7988 0.7989 1293
9
+ weighted avg 0.8017 0.7997 0.7991 1293
10
+
11
+ eval_loss = 0.4485675318189609
12
+ fn = 158
13
+ fp = 101
14
+ macro_f1 = 0.7989208916034054
15
+ mcc = 0.6009740320695361
16
+ tn = 557
17
+ tp = 477
18
+ weighted_f1 = 0.7991421948188572
19
+ weighted_p = 0.8021402472959567
20
+ weighted_r = 0.7988428308163606
model_args.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"adam_epsilon": 1e-08, "begin_tag": "<e>", "best_model_dir": "best_model", "cache_dir": "temp/cache_dir/", "config": {}, "custom_layer_parameters": [], "custom_parameter_groups": [], "dataloader_num_workers": 70, "do_lower_case": false, "dynamic_quantize": false, "early_stopping_consider_epochs": false, "early_stopping_delta": 0, "early_stopping_metric": "eval_loss", "early_stopping_metric_minimize": true, "early_stopping_patience": 10, "encoding": null, "end_tag": "</e>", "eval_batch_size": 8, "evaluate_during_training": true, "evaluate_during_training_silent": false, "evaluate_during_training_steps": 20, "evaluate_during_training_verbose": true, "evaluate_each_epoch": true, "fp16": false, "gradient_accumulation_steps": 1, "learning_rate": 1e-05, "local_rank": -1, "logging_steps": 20, "manual_seed": 777, "max_grad_norm": 1.0, "max_seq_length": 120, "model_name": "xlm-roberta-large", "model_type": "xlmroberta", "multiprocessing_chunksize": 500, "n_gpu": 1, "no_cache": false, "no_save": false, "num_train_epochs": 5, "output_dir": "temp/outputs/", "overwrite_output_dir": true, "process_count": 70, "quantized_model": false, "reprocess_input_data": true, "save_best_model": true, "save_eval_checkpoints": false, "save_model_every_epoch": false, "save_optimizer_and_scheduler": true, "save_steps": 20, "save_recent_only": true, "silent": false, "tensorboard_dir": null, "thread_count": null, "train_batch_size": 8, "train_custom_parameters_only": false, "use_cached_eval_features": false, "use_early_stopping": true, "use_multiprocessing": false, "wandb_kwargs": {"group": "all_xlm-roberta-large_P_concat", "job_type": "2"}, "wandb_project": "TransWiC-groups", "warmup_ratio": 0.1, "warmup_steps": 729, "weight_decay": 0, "skip_special_tokens": true, "model_class": "ClassificationModel", "labels_list": [0, 1], "labels_map": {}, "lazy_delimiter": "\t", "lazy_labels_column": 1, "lazy_loading": false, "lazy_loading_start_line": 1, "lazy_text_a_column": null, "lazy_text_b_column": null, "lazy_text_column": 0, "onnx": false, "regression": false, "sliding_window": false, "stride": 0.8, "tie_value": 1, "tagging": true, "strategy": "P", "special_tags": ["<e>", "</e>"], "merge_n": 2, "merge_type": "concat"}
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb11ec5673760792b1f7a6b600aadce1575f5654578ff3a328d76a1e9c0d1a68
3
+ size 4504578173
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e37dca701c36ca7038957b022bc446ac558ba51e115ec10987d618d49e39fe
3
+ size 2256539517
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9d390f69ee9173b5a24de5849a4c781ca11142415bd7ea7442bbe07008fc485
3
+ size 627
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
test_eval_ar.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8291 0.7760 0.8017 500
5
+ T 0.7895 0.8400 0.8140 500
6
+
7
+ accuracy 0.8080 1000
8
+ macro avg 0.8093 0.8080 0.8078 1000
9
+ weighted avg 0.8093 0.8080 0.8078 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7857142857142857
14
+ Weighted Recall = 0.7857142857142857
15
+ Weighted Precision = 0.7987012987012988
16
+ Weighted F1 = 0.7855134556165483
17
+ Macro Recall = 0.7918238993710691
18
+ Macro Precision = 0.7929292929292929
19
+ Macro F1 = 0.7856919712589814
20
+ ADV
21
+ Accuracy = 0.9
22
+ Weighted Recall = 0.9
23
+ Weighted Precision = 0.9111111111111111
24
+ Weighted F1 = 0.8862745098039216
25
+ Macro Recall = 0.75
26
+ Macro Precision = 0.9444444444444444
27
+ Macro F1 = 0.803921568627451
28
+ NOUN
29
+ Accuracy = 0.8016194331983806
30
+ Weighted Recall = 0.8016194331983806
31
+ Weighted Precision = 0.8020173708432817
32
+ Weighted F1 = 0.8014892301846458
33
+ Macro Recall = 0.8013442622950819
34
+ Macro Precision = 0.8021367521367522
35
+ Macro F1 = 0.8014111083764048
36
+ VERB
37
+ Accuracy = 0.8190954773869347
38
+ Weighted Recall = 0.8190954773869347
39
+ Weighted Precision = 0.820368646605092
40
+ Weighted F1 = 0.8189857967366196
41
+ Macro Recall = 0.8193802560800061
42
+ Macro Precision = 0.8201564517353991
43
+ Macro F1 = 0.8190223569533914
test_eval_en.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8798 0.9080 0.8937 500
5
+ T 0.9050 0.8760 0.8902 500
6
+
7
+ accuracy 0.8920 1000
8
+ macro avg 0.8924 0.8920 0.8920 1000
9
+ weighted avg 0.8924 0.8920 0.8920 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.8819444444444444
14
+ Weighted Recall = 0.8819444444444444
15
+ Weighted Precision = 0.882109500805153
16
+ Weighted F1 = 0.8819843917006387
17
+ Macro Recall = 0.8819659442724458
18
+ Macro Precision = 0.8814492753623189
19
+ Macro F1 = 0.8816648136510852
20
+ ADV
21
+ Accuracy = 0.7333333333333333
22
+ Weighted Recall = 0.7333333333333333
23
+ Weighted Precision = 0.7944444444444445
24
+ Weighted F1 = 0.7333333333333333
25
+ Macro Recall = 0.7638888888888888
26
+ Macro Precision = 0.7638888888888888
27
+ Macro F1 = 0.7333333333333334
28
+ NOUN
29
+ Accuracy = 0.8882575757575758
30
+ Weighted Recall = 0.8882575757575758
31
+ Weighted Precision = 0.8889153569860092
32
+ Weighted F1 = 0.8882002236169277
33
+ Macro Recall = 0.8881770571777028
34
+ Macro Precision = 0.8889751552795031
35
+ Macro F1 = 0.8881897959549916
36
+ VERB
37
+ Accuracy = 0.9194630872483222
38
+ Weighted Recall = 0.9194630872483222
39
+ Weighted Precision = 0.9213610243880368
40
+ Weighted F1 = 0.9193722943722944
41
+ Macro Recall = 0.9194630872483222
42
+ Macro Precision = 0.9213610243880368
43
+ Macro F1 = 0.9193722943722944
test_eval_fr.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.8016 0.8160 0.8087 500
5
+ T 0.8126 0.7980 0.8052 500
6
+
7
+ accuracy 0.8070 1000
8
+ macro avg 0.8071 0.8070 0.8070 1000
9
+ weighted avg 0.8071 0.8070 0.8070 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.7934782608695652
14
+ Weighted Recall = 0.7934782608695652
15
+ Weighted Precision = 0.7974546491376786
16
+ Weighted F1 = 0.7939677068682155
17
+ Macro Recall = 0.7957771680782536
18
+ Macro Precision = 0.7929812123360511
19
+ Macro F1 = 0.7928664533712526
20
+ ADV
21
+ Accuracy = 0.9333333333333333
22
+ Weighted Recall = 0.9333333333333333
23
+ Weighted Precision = 0.9391304347826086
24
+ Weighted F1 = 0.930681818181818
25
+ Macro Recall = 0.8888888888888888
26
+ Macro Precision = 0.9565217391304348
27
+ Macro F1 = 0.9147727272727273
28
+ NOUN
29
+ Accuracy = 0.7859922178988327
30
+ Weighted Recall = 0.7859922178988327
31
+ Weighted Precision = 0.7868988198231214
32
+ Weighted F1 = 0.7856804851459047
33
+ Macro Recall = 0.7854557569699998
34
+ Macro Precision = 0.7871254703041934
35
+ Macro F1 = 0.7855246187694408
36
+ VERB
37
+ Accuracy = 0.8419117647058824
38
+ Weighted Recall = 0.8419117647058824
39
+ Weighted Precision = 0.8458034075699246
40
+ Weighted F1 = 0.8394913284462723
41
+ Macro Recall = 0.8288116901020127
42
+ Macro Precision = 0.8496950504339666
43
+ Macro F1 = 0.8346504559270518
test_eval_ru.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.7042 0.8000 0.7491 500
5
+ T 0.7685 0.6640 0.7124 500
6
+
7
+ accuracy 0.7320 1000
8
+ macro avg 0.7364 0.7320 0.7308 1000
9
+ weighted avg 0.7364 0.7320 0.7308 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.6666666666666666
14
+ Weighted Recall = 0.6666666666666666
15
+ Weighted Precision = 0.7687400318979267
16
+ Weighted F1 = 0.6666666666666666
17
+ Macro Recall = 0.7177033492822966
18
+ Macro Precision = 0.7177033492822966
19
+ Macro F1 = 0.6666666666666666
20
+ ADV
21
+ Accuracy = 0.4375
22
+ Weighted Recall = 0.4375
23
+ Weighted Precision = 0.5113636363636364
24
+ Weighted F1 = 0.42647058823529416
25
+ Macro Recall = 0.4833333333333333
26
+ Macro Precision = 0.4818181818181818
27
+ Macro F1 = 0.43529411764705883
28
+ NOUN
29
+ Accuracy = 0.7439862542955327
30
+ Weighted Recall = 0.7439862542955327
31
+ Weighted Precision = 0.7459487120816265
32
+ Weighted F1 = 0.7428299703669132
33
+ Macro Recall = 0.7420921985815603
34
+ Macro Precision = 0.7465184578904924
35
+ Macro F1 = 0.7421585796986825
36
+ VERB
37
+ Accuracy = 0.7311827956989247
38
+ Weighted Recall = 0.7311827956989247
39
+ Weighted Precision = 0.7356482071769588
40
+ Weighted F1 = 0.7303416466893777
41
+ Macro Recall = 0.7321536993668141
42
+ Macro Precision = 0.7350900307422046
43
+ Macro F1 = 0.7305519339417644
test_eval_zh.txt ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Default classification report:
2
+ precision recall f1-score support
3
+
4
+ F 0.6050 0.6740 0.6377 500
5
+ T 0.6321 0.5600 0.5938 500
6
+
7
+ accuracy 0.6170 1000
8
+ macro avg 0.6185 0.6170 0.6158 1000
9
+ weighted avg 0.6185 0.6170 0.6158 1000
10
+
11
+
12
+ ADJ
13
+ Accuracy = 0.532258064516129
14
+ Weighted Recall = 0.532258064516129
15
+ Weighted Precision = 0.5745007680491552
16
+ Weighted F1 = 0.5362829625268115
17
+ Macro Recall = 0.5493421052631579
18
+ Macro Precision = 0.5476190476190476
19
+ Macro F1 = 0.53116036505867
20
+ ADV
21
+ Accuracy = 0.6
22
+ Weighted Recall = 0.6
23
+ Weighted Precision = 0.8666666666666666
24
+ Weighted F1 = 0.6333333333333333
25
+ Macro Recall = 0.75
26
+ Macro Precision = 0.6666666666666666
27
+ Macro F1 = 0.5833333333333333
28
+ NOUN
29
+ Accuracy = 0.6299638989169675
30
+ Weighted Recall = 0.6299638989169675
31
+ Weighted Precision = 0.6298372139778151
32
+ Weighted F1 = 0.6298492264125135
33
+ Macro Recall = 0.6294992175273866
34
+ Macro Precision = 0.6296598550630019
35
+ Macro F1 = 0.6295281434000424
36
+ VERB
37
+ Accuracy = 0.6126373626373627
38
+ Weighted Recall = 0.6126373626373627
39
+ Weighted Precision = 0.6140917905623788
40
+ Weighted F1 = 0.6082284632153951
41
+ Macro Recall = 0.6092238878143134
42
+ Macro Precision = 0.6143562320032908
43
+ Macro F1 = 0.6066252270619524
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "sp_model_kwargs": {}, "do_lower_case": false, "model_max_length": 512, "special_tokens_map_file": null, "tokenizer_file": "/home/hh2/.cache/huggingface/transformers/7766c86e10505ed9b39af34e456480399bf06e35b36b8f2b917460a2dbe94e59.a984cf52fc87644bd4a2165f1e07e0ac880272c1e82d648b4674907056912bd7", "name_or_path": "xlm-roberta-large", "tokenizer_class": "XLMRobertaTokenizer"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24465011e92b2755b9b6aa176ffcc145b165321ff7ea74629d8389f33a39642a
3
+ size 2811