Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,41 @@ grammatical mistakes, slang, and non-native speaker errors. This model helps imp
|
|
18 |
in scenarios where speakers use incorrect or informal English, making it useful in language learning,
|
19 |
transcription of casual conversations, or analyzing spoken communication from non-native English speakers.
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
## Usage Guide
|
22 |
|
23 |
This project was executed on an Ubuntu 22.04.3 system running Linux kernel 6.8.0-40-generic.
|
@@ -81,5 +116,12 @@ tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-large-v3", task="tr
|
|
81 |
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-large-v3")
|
82 |
|
83 |
pipe = pipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, task="automatic-speech-recognition", device=device)
|
84 |
-
```
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
in scenarios where speakers use incorrect or informal English, making it useful in language learning,
|
19 |
transcription of casual conversations, or analyzing spoken communication from non-native English speakers.
|
20 |
|
21 |
+
## Training procedure
|
22 |
+
|
23 |
+
### Training hyperparameters
|
24 |
+
|
25 |
+
The following hyperparameters were used during training:
|
26 |
+
- learning_rate: 1e-05
|
27 |
+
- train_batch_size: 8
|
28 |
+
- eval_batch_size: 8
|
29 |
+
- seed: 42
|
30 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
31 |
+
- lr_scheduler_type: linear
|
32 |
+
- lr_scheduler_warmup_steps: 50
|
33 |
+
- training_steps: 100000
|
34 |
+
- mixed_precision_training: Native AMP
|
35 |
+
|
36 |
+
### Training results
|
37 |
+
|
38 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
39 |
+
|:-------------:|:------:|:----:|:---------------:|:-------:|
|
40 |
+
| 0.9094 | 0.1270 | 500 | 0.6347 | 24.3686 |
|
41 |
+
| 0.5517 | 0.2541 | 1000 | 0.4835 | 18.0769 |
|
42 |
+
| 0.5364 | 0.3811 | 1500 | 0.4330 | 15.1149 |
|
43 |
+
| 0.5503 | 0.5081 | 2000 | 0.4113 | 13.6524 |
|
44 |
+
| 0.6521 | 0.6352 | 2500 | 0.3987 | 13.5897 |
|
45 |
+
| 0.6044 | 0.7622 | 3000 | 0.3912 | 13.0538 |
|
46 |
+
| 0.5487 | 0.8892 | 3500 | 0.3835 | 12.6119 |
|
47 |
+
| 0.5297 | 1.0163 | 4000 | 0.3791 | 12.4408 |
|
48 |
+
| 0.46 | 1.1433 | 4500 | 0.3751 | 12.3525 |
|
49 |
+
| 0.4947 | 1.2703 | 5000 | 0.3721 | 12.1415 |
|
50 |
+
| 0.524 | 1.3974 | 5500 | 0.3682 | 13.0139 |
|
51 |
+
| 0.4743 | 1.5244 | 6000 | 0.3649 | 13.3388 |
|
52 |
+
| 0.5338 | 1.6514 | 6500 | 0.3621 | 12.9397 |
|
53 |
+
| 0.5162 | 1.7785 | 7000 | 0.3597 | 13.3246 |
|
54 |
+
| 0.5004 | 1.9055 | 7500 | 0.3590 | 12.3268 |
|
55 |
+
|
56 |
## Usage Guide
|
57 |
|
58 |
This project was executed on an Ubuntu 22.04.3 system running Linux kernel 6.8.0-40-generic.
|
|
|
116 |
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-large-v3")
|
117 |
|
118 |
pipe = pipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor, task="automatic-speech-recognition", device=device)
|
|
|
119 |
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- PEFT 0.11.1
|
124 |
+
- Transformers 4.42.4
|
125 |
+
- Pytorch 2.1.0+cu118
|
126 |
+
- Datasets 2.20.0
|
127 |
+
- Tokenizers 0.19.1
|