--- license: cc-by-sa-4.0 --- # Usage ```python import re import urllib.parse from transformers import AutoTokenizer, AutoModelForSequenceClassification import nltk.tokenize import torch preprocess_tokenizer_regex = r'[^\W_0-9]+|[^\w\s]+|_+|\s+|[0-9]+' # Similar to wordpunct_tokenize preprocess_tokenizer = nltk.tokenize.RegexpTokenizer(preprocess_tokenizer_regex).tokenize def preprocess_url(url): protocol_idx = url.find("://") protocol_idx = (protocol_idx + 3) if protocol_idx != -1 else 0 url = url.rstrip('/')[protocol_idx:] url = urllib.parse.unquote(url, errors="backslashreplace") # Remove blanks url = re.sub(r'\s+', ' ', url) url = re.sub(r'^\s+|\s+$', '', url) # Tokenize url = ' '.join(preprocess_tokenizer(url)) return url tokenizer = AutoTokenizer.from_pretrained("Transducens/xlm-roberta-base-parallel-urls-classifier") model = AutoModelForSequenceClassification.from_pretrained("Transducens/xlm-roberta-base-parallel-urls-classifier") # prepare input url1 = preprocess_url("https://web.ua.es/en/culture.html") url2 = preprocess_url("https://web.ua.es/es/cultura.html") urls = f"{url1}{tokenizer.sep_token}{url2}" encoded_input = tokenizer(urls, add_special_tokens=True, truncation=True, padding="longest", return_attention_mask=True, return_tensors="pt", max_length=256) # forward pass output = model(encoded_input["input_ids"], encoded_input["attention_mask"]) # obtain probability probability = torch.sigmoid(output["logits"]).cpu().squeeze().item() print(probability) ```