--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-135M-Instruct tags: - generated_from_trainer - finance model-index: - name: check-amount-deverbalizer-smollm2 results: [] datasets: - TrevorJS/check-amount-verbalizer-synthetic-data language: - en pipeline_tag: text-generation --- # check-amount-deverbalizer-smollm2 This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-135M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1520 - Json Parse Rate: 0.96 - Dollar Accuracy: 0.96 - Cents Accuracy: 0.96 - Digit Count Accuracy: 0.96 - Perfect Match: 0.96 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 2 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Json Parse Rate | Dollar Accuracy | Cents Accuracy | Digit Count Accuracy | Perfect Match | |:-------------:|:------:|:----:|:---------------:|:---------------:|:---------------:|:--------------:|:--------------------:|:-------------:| | 0.1588 | 0.2128 | 200 | 0.1580 | 0.9571 | 0.9271 | 0.9529 | 0.95 | 0.9186 | | 0.1576 | 0.4255 | 400 | 0.1549 | 0.96 | 0.9557 | 0.96 | 0.96 | 0.9557 | | 0.1546 | 0.6383 | 600 | 0.1539 | 0.96 | 0.9571 | 0.96 | 0.96 | 0.9571 | | 0.154 | 0.8511 | 800 | 0.1541 | 0.9586 | 0.95 | 0.9586 | 0.9586 | 0.95 | | 0.1539 | 1.0638 | 1000 | 0.1536 | 0.96 | 0.9557 | 0.96 | 0.96 | 0.9557 | | 0.1544 | 1.2766 | 1200 | 0.1524 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | 0.1535 | 1.4894 | 1400 | 0.1529 | 0.96 | 0.9571 | 0.96 | 0.96 | 0.9571 | | 0.1537 | 1.7021 | 1600 | 0.1525 | 0.96 | 0.9586 | 0.96 | 0.96 | 0.9586 | | 0.1548 | 1.9149 | 1800 | 0.1527 | 0.96 | 0.9586 | 0.96 | 0.96 | 0.9586 | | 0.1545 | 2.1277 | 2000 | 0.1524 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | 0.1534 | 2.3404 | 2200 | 0.1526 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | 0.1533 | 2.5532 | 2400 | 0.1522 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | 0.1524 | 2.7660 | 2600 | 0.1521 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | | 0.1527 | 2.9787 | 2800 | 0.1520 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0