File size: 4,973 Bytes
b0f6b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f4402
 
 
 
 
 
 
 
 
b06d4b7
17f4402
b06d4b7
 
17f4402
b06d4b7
 
 
17f4402
b06d4b7
 
17f4402
 
 
 
 
b06d4b7
 
17f4402
 
 
b06d4b7
 
17f4402
 
 
 
 
 
 
b06d4b7
 
17f4402
 
 
 
 
 
 
 
 
b06d4b7
 
17f4402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b06d4b7
 
17f4402
 
 
 
b06d4b7
 
17f4402
 
 
 
 
 
 
b06d4b7
 
17f4402
 
 
 
 
 
 
 
 
 
 
 
b0f6b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
base_model: Spestly/Athena-1-14B
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
- llama-cpp
- gguf-my-repo
license: apache-2.0
language:
- en
---

# Triangle104/Athena-1-14B-Q4_K_S-GGUF
This model was converted to GGUF format from [`Spestly/Athena-1-14B`](https://huggingface.co/Spestly/Athena-1-14B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/Spestly/Athena-1-14B) for more details on the model.

---
Model details:
-
Athena 1 is a state-of-the-art language model fine-tuned from Qwen/Qwen2.5-14B-Instruct.
 Designed to excel in instruction-following tasks, Athena 1 delivers 
advanced capabilities in text generation, coding, mathematics, and 
long-context understanding. It is optimized for a wide variety of use 
cases, including conversational AI, structured data interpretation, and 
multilingual applications. It outperforms Ava 1.5 in many aspects making
Athena-1 the superior model.

Key Features
-

πŸš€ Enhanced Capabilities
-
Instruction Following: Athena 1 has been fine-tuned for superior adherence to user prompts, making it ideal for chatbots, virtual assistants, and guided workflows. Coding and Mathematics: Specialized fine-tuning enhances coding problem-solving and mathematical reasoning. Long-Context Understanding: Handles input contexts up to 128K tokens and generates up to 8K tokens.

🌐 Multilingual Support
-
Supports 29+ languages, including:

English, Chinese, French, Spanish, Portuguese, German, Italian, Russian
Japanese, Korean, Vietnamese, Thai, Arabic, and more.

πŸ“Š Structured Data & Outputs
-
Structured Data Interpretation: Understands and processes structured formats like tables and JSON.
Structured Output Generation: Generates well-formatted outputs, including JSON, XML, and other structured formats.

Details
-
Base Model: Qwen/Qwen2.5-14B-Instruct
Architecture: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias.
Parameters: 14.7B total (13.1B non-embedding).
Layers: 48
Attention Heads: 40 for Q, 8 for KV.
Context Length: Up to 131,072 tokens.

Applications
-
Athena 1 is designed for a wide range of use cases:

Conversational AI and chatbots.
Code generation, debugging, and explanation.
Mathematical problem-solving.
Large-document summarization and analysis.
Multilingual text generation and translation.
Structured data processing (e.g., tables, JSON).

Quickstart
-	
Below is an example of how to use Athena 1 for text generation:

huggingface-cli login

# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="Spestly/Athena-1-14B")
pipe(messages)  

# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Spestly/Athena-1-14B")
model = AutoModelForCausalLM.from_pretrained("Spestly/Athena-1-14B")

Performance
-	
Athena 1 has been optimized for efficiency and performance on modern 
GPUs. For detailed evaluation metrics (e.g., throughput, accuracy, and 
memory requirements), refer to the Qwen2.5 performance benchmarks.

Requirements
-	
To use Athena 1, ensure the following:

Python >= 3.8
Transformers >= 4.37.0 (to support Qwen models)
PyTorch >= 2.0
GPU with BF16 support for optimal performance.

Citation
-	

If you use Athena 1 in your research or projects, please cite its base model Qwen2.5 as follows:

@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Athena-1-14B-Q4_K_S-GGUF --hf-file athena-1-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Athena-1-14B-Q4_K_S-GGUF --hf-file athena-1-14b-q4_k_s.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Athena-1-14B-Q4_K_S-GGUF --hf-file athena-1-14b-q4_k_s.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Athena-1-14B-Q4_K_S-GGUF --hf-file athena-1-14b-q4_k_s.gguf -c 2048
```