File size: 2,777 Bytes
9072d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d9b177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9072d01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
base_model: knifeayumu/Cydonia-v1.2-Magnum-v4-22B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: other
license_name: mrl
inference: false
license_link: https://mistral.ai/licenses/MRL-0.1.md
---

# Triangle104/Cydonia-v1.2-Magnum-v4-22B-Q4_K_M-GGUF
This model was converted to GGUF format from [`knifeayumu/Cydonia-v1.2-Magnum-v4-22B`](https://huggingface.co/knifeayumu/Cydonia-v1.2-Magnum-v4-22B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/knifeayumu/Cydonia-v1.2-Magnum-v4-22B) for more details on the model.

---
Model details:
-
The Drummer becomes hornier

Recipe based on MarsupialAI/Monstral-123B. It should work since it's the same Mistral, TheDrummer and MarsupialAI, right?

This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method

This model was merged using the SLERP merge method.
Models Merged

The following models were included in the merge:

    TheDrummer/Cydonia-22B-v1.2
    anthracite-org/magnum-v4-22b

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: TheDrummer/Cydonia-22B-v1.2
  - model: anthracite-org/magnum-v4-22b
merge_method: slerp
base_model: TheDrummer/Cydonia-22B-v1.2
parameters:
  t: [0.1, 0.3, 0.6, 0.3, 0.1]
dtype: bfloat16

---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo Triangle104/Cydonia-v1.2-Magnum-v4-22B-Q4_K_M-GGUF --hf-file cydonia-v1.2-magnum-v4-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo Triangle104/Cydonia-v1.2-Magnum-v4-22B-Q4_K_M-GGUF --hf-file cydonia-v1.2-magnum-v4-22b-q4_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Cydonia-v1.2-Magnum-v4-22B-Q4_K_M-GGUF --hf-file cydonia-v1.2-magnum-v4-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo Triangle104/Cydonia-v1.2-Magnum-v4-22B-Q4_K_M-GGUF --hf-file cydonia-v1.2-magnum-v4-22b-q4_k_m.gguf -c 2048
```