Triangle104 commited on
Commit
73dedff
·
verified ·
1 Parent(s): 4cb4dcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +138 -1
README.md CHANGED
@@ -4,12 +4,149 @@ base_model: P0x0/Epos-8b
4
  tags:
5
  - llama-cpp
6
  - gguf-my-repo
 
7
  ---
8
 
9
  # Triangle104/Epos-8b-Q4_K_S-GGUF
10
  This model was converted to GGUF format from [`P0x0/Epos-8b`](https://huggingface.co/P0x0/Epos-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
11
  Refer to the [original model card](https://huggingface.co/P0x0/Epos-8b) for more details on the model.
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ## Use with llama.cpp
14
  Install llama.cpp through brew (works on Mac and Linux)
15
 
@@ -48,4 +185,4 @@ Step 3: Run inference through the main binary.
48
  or
49
  ```
50
  ./llama-server --hf-repo Triangle104/Epos-8b-Q4_K_S-GGUF --hf-file epos-8b-q4_k_s.gguf -c 2048
51
- ```
 
4
  tags:
5
  - llama-cpp
6
  - gguf-my-repo
7
+ license: llama3.1
8
  ---
9
 
10
  # Triangle104/Epos-8b-Q4_K_S-GGUF
11
  This model was converted to GGUF format from [`P0x0/Epos-8b`](https://huggingface.co/P0x0/Epos-8b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
12
  Refer to the [original model card](https://huggingface.co/P0x0/Epos-8b) for more details on the model.
13
 
14
+ ---
15
+ Model details:
16
+ -
17
+ Epos-8B is a fine-tuned version of the base model Llama-3.1-8B
18
+ from Meta, optimized for storytelling, dialogue generation, and
19
+ creative writing. The model specializes in generating rich narratives,
20
+ immersive prose, and dynamic character interactions, making it ideal for
21
+ creative tasks.
22
+
23
+
24
+
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+ Model Details
34
+
35
+
36
+
37
+
38
+
39
+
40
+
41
+
42
+
43
+ Model Description
44
+
45
+
46
+
47
+
48
+ Epos-8B is an 8 billion parameter language model fine-tuned for
49
+ storytelling and narrative tasks. Inspired by the grandeur of epic
50
+ tales, it is designed to produce high-quality, engaging content that
51
+ evokes the depth and imagination of ancient myths and modern
52
+ storytelling traditions.
53
+
54
+
55
+ Developed by: P0x0
56
+ Funded by: P0x0
57
+ Shared by: P0x0
58
+ Model type: Transformer-based Language Model
59
+ Language(s) (NLP): Primarily English
60
+ License: Apache 2.0
61
+ Finetuned from model: meta-llama/Llama-3.1-8B
62
+
63
+
64
+
65
+
66
+
67
+
68
+
69
+ Model Sources
70
+
71
+
72
+
73
+
74
+ Repository: Epos-8B on Hugging Face
75
+ GGUF Repository: Epos-8B-GGUF (TO BE ADDED)
76
+
77
+
78
+
79
+
80
+
81
+
82
+
83
+
84
+ Uses
85
+
86
+
87
+
88
+
89
+
90
+
91
+
92
+
93
+
94
+ Direct Use
95
+
96
+
97
+
98
+
99
+ Epos-8B is ideal for:
100
+
101
+
102
+ Storytelling: Generate detailed, immersive, and engaging narratives.
103
+ Dialogue Creation: Create realistic and dynamic character interactions for stories or games.
104
+
105
+
106
+
107
+
108
+
109
+
110
+
111
+ How to Get Started with the Model
112
+
113
+
114
+
115
+
116
+ To run the quantized version of the model, you can use KoboldCPP, which allows you to run quantized GGUF models locally.
117
+
118
+
119
+
120
+
121
+
122
+
123
+
124
+ Steps:
125
+
126
+
127
+
128
+
129
+ Download KoboldCPP.
130
+ Follow the setup instructions provided in the repository.
131
+ Download the GGUF variant of Epos-8B from Epos-8B-GGUF.
132
+ Load the model in KoboldCPP and start generating!
133
+
134
+
135
+ Alternatively, integrate the model directly into your code with the following snippet:
136
+
137
+
138
+ from transformers import AutoModelForCausalLM, AutoTokenizer
139
+
140
+ tokenizer = AutoTokenizer.from_pretrained("P0x0/Epos-8B")
141
+ model = AutoModelForCausalLM.from_pretrained("P0x0/Epos-8B")
142
+
143
+ input_text = "Once upon a time in a distant land..."
144
+ inputs = tokenizer(input_text, return_tensors="pt")
145
+ outputs = model.generate(**inputs)
146
+
147
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
148
+
149
+ ---
150
  ## Use with llama.cpp
151
  Install llama.cpp through brew (works on Mac and Linux)
152
 
 
185
  or
186
  ```
187
  ./llama-server --hf-repo Triangle104/Epos-8b-Q4_K_S-GGUF --hf-file epos-8b-q4_k_s.gguf -c 2048
188
+ ```